

Q

Search

Barcode

4C012

4C002

4C009

Tool

CFB01478

CFB01653

4C003

Hands-on Benchling support

Q

Mondays 13:00 -14:00 (Room 222)

1. Introduction to the Molecular Biology Suite

Functionalities and tools overview

Sequence Alignment

- ✓ Alignment to template
- ✓ Consensus alignment
- ✓ Benchling BLAST

Sequence Visualization

- ✓ Plasmid map
- Annotations and feature libraries creation (Bulk auto-annotation)
- ✓ Sequence search

Construct Design

- ✓ RE-based cloning
- ✓ Golden Gate and Gibson assembly
- ✓ Bulk assembly
- ✓ Codon optimization
- ✓ Worklists integration
- ✓ In silico PCR and digestions
- Customizable enzyme lists

AA / Protein Analysis

- ✓ AA alignment
- ✓ Auto-fill, back and bulk translations
- ✓ Electrochemical properties overview

CRISPR

- ✓ Guide RNA design
- ✓ On/Off-target scoring
- ✓ HR template design

DTU

H

Functionalities and tools overview

Functionalities

1. Introduction to the Molecular Biology suite

DTU

H

Q

Functionalities and tools overview

DTU

H

DTU

2. Training overview

Training goals:

The basics of...

0

□ How to navigate the **sequence visualization** window and the workspace

- How to **assemble** simple constructs
- □ How to perform bulk assemblies with the **Combinatorial Assembly** tool

2. Training overview

Training goals:

The basics of...

- How to create a sequence alignment
- How to use Benchling's **CRISPR** tools

Q

Hypothetical scenario: Production of acetoin in E. coli

Journal of the Taiwan Institute of Chemical Engineers 167 (2025) 105895
Contents lists available at ScienceDirect

Journal of the Taiwan Institute of Chemical Engineers

Link to article

journal homepage: www.journals.elsevier.com/journal-of-the-taiwan-institute-of-chemical-engineer

the Taiwan Institute of Chemical Engineer Care State S

Metabolic engineering of *Escherichia coli* for improved cofactor regeneration in lactate to acetoin via whole-cell conversion

Chan-Hsiang Hsu, Sefli Sri Wahyu Effendi, Wan-Wen Ting, Yu-Hsiu Li, I-Son Ng ^{*} Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan

Q

Hypothetical scenario: Production of acetoin in E. coli

alsS and alsD from Bacillus subtilis

- ✓ Primer design
- ✓ In silico PCR
- ✓ Virtual digestion
- ✓ RE-based cloning

Hypothetical scenario: Production of acetoin in E. coli

2. Training overview

Hypothetical scenario: Production of acetoin in E. coli

Stepwise Gene Knockout Using CRISPR/Cas9 in *Escherichia coli. Bio*protocol, 8(2), e2688. <u>https://doi.org/10.21769/BioProtoc.2688</u>

Q

Hypothetical scenario: Production of acetoin in E. coli

2. Training overview

3. The basics of sequences

This section will give you an overview of how to **import**, **visualize**, and **annotate** sequences. It also shows how to **optimize** a coding sequence's codons.

DTU

3. The basics of sequences 3.1 Sequence creation and import

How to create a new entity from a nucleotide sequence

2

Create a new DNA sequence

You can paste or write down any nucleotide sequence of your interest, and you must assign the right topology and schema.

•	Project			
lì	Entry	>		
	Protocol			
X	DNA / RNA sequence			New DNA / RNA sequence
0 <u>0</u>	AA sequence	>		New alignment
ΠΠΤ	Oligo	>	-5	Import DNA / RNA sequences
Φ	CRISPR	>	-5	Import DNA / RNA sequences from spreadsheet
	Entity from schema	\rightarrow	đ	Assemble DNA / RNA sequences
0 000 000	Mixture	>	U	by concatenation
	Inventory	>	<u>C</u> 2	Assemble DNA sequences by cloning
Å	Legacy workflow			
۵	Request	>		
.tt	Dashboard			
	More	>		
		 Project Entry Protocol Protocol DNA / RNA sequence AA sequence Oligo CRISPR CRISPR Entity from schema Mixture Inventory Legacy workflow Request Dashboard More 	 Project Entry Protocol DNA / RNA sequence An sequence An sequence An sequence CRISPR CRISPR CRISPR Mixture Mixture Inventory Legacy workflow Request Dashboard More More 	Project Entry Protocol DNA / RNA sequence AA sequence Oligo CRISPR Entry from schema Mixture Mixture Inventory Request Nore

Create DNA / RNA sequence	×
REATE NEW UPLOAD FILES IMPORT FROM DATABASE SELECT CHROMOS	SOMAL REGION
lame*	
pCAT	
iet nucleotide type*	Set topology
DNA RNA	Linear ~
iet folder*	Set schema
Patricia B.	DNA Fragment V
lases	
ggcacgtaagaggttccaactttcaccataatgaaaca	
	Close Create
You can leave the Bases field e	mpty and add your sequence later.

You can leave the **Bases** field **empty** and add your sequence later. This can be useful if you wish to copy and paste a sequence with its annotations.

How to import of sequences from a database

Create a new DNA sequence 2

2				
•				
۹	•	Project		
(+)	lì	Entry		
		Protocol		
	X	DNA / RNA sequence	X	New DNA / RNA sequence
đ	a∯•	AA sequence	E	New alignment
æ	ππ	Oligo >	-5	Import DNA / RNA sequences
~	Φ	CRISPR	-5	Import DNA / RNA sequences from spreadsheet
		Entity from schema		Assemble DNA / RNA sequences
ш	Å.	Mixture >		by concatenation
2		Inventory >	2	Assemble DNA sequences by cloning
	ሐ	Legacy workflow		
	Ø	Request >		
	hil	Dashboard		
P		Moro		

You can write or paste a valid accession number from databases like GenBank, Addgene or the iGEM Registry

Create DNA / RNA sequence CREATE NEW UPLOAD FILES IMPORT FROM DATABASE SELECT CHROMOSOMAL REGION Example searches: https://www.addgene.org/browse/sequence/364796/ (Addgene URL) BRCA2 (Gene name) M62653 (NCBI Accession) ENSMUSG0000041147 (ENSEMBL ID) BBa_E0040 (Registry of Standard Biological Parts)

JPUB_001430 (JBEI Public Registry)

Import multiple sequences at once by entering space-separated or comma-separated accession numbers.

Sequence

Y11520

If the ID is valid, Benchling will show you the gene's description. You can set its schema and import it.

Create DNA	/ RNA sequenc	e	Nesshere	
CREATE NEW UPL	OAD FILES IMPORT F	ROM DATABASE SELECT CHROMOSO	No schema	
			SCHEMAS	
Sequence			DNA Fragment	
Y11520 $ imes$				
			Gene	
	Entry		aRNA	
	Y11520		9.000	
\sim	Database		Marker	
\sim	NCBI Nucleotide	(Genbank)		
NCDI	Length		Origin of Replication	
INCDI	3544		Plasmid	
	Description			
	Pseudomonas sp	, vdh gene and ORF2	Primer	
			Promoter	
Set nucleotide typ	e*		Tag	
D	AV	RNA		
Set folder*			Terminator	
	Patricia	В.	Select a schema	

(2)

How to import sequences from a file

Choose the *Import* sequences option

Choose the correct nucleotide type and select the sequence files. The sequences will be uploaded automatically to the folder you set.

*					Create	DNA / RNA s	equenc	e						:
۲					CREATE N		LES IMP	ORT FROM DATABA	SE SELECT CH	ROMOSOMAL	REGION			
٩	•	Project			Upload a	any DNA file (Genb	ank, FAST/	A, ApE, Geneious, S	SnapGene, SeqB	uilder v15 or b	elow, etc.) to	make a Benchl	ing sequence. Drag in	multiple at once!
(+)		Entry	,		Nucleoti	ide type*				Pro	oject folder			
		Protocol				DNA			RNA				Mía	
	Z	DNA / RNA sequence	X	New DNA / RNA sequence					ag and drop f	files to unl	oad or C	hoose a file		
Ð	a∯-	AA sequence		New alignment				••••						
ሔ	TTTT	Oligo	-5	Import DNA / RNA sequences		Open Move	To Se	et Topology 👻	Edit Tags 🔹	Auto-ann	otate 🗎	Î		Show errors only
	¢	CRISPR	-5	Import DNA / RNA sequences from spreadsheet		GFP.dna							UPLC	AD DONE
		Entity from schema		Assemble DNA / RNA sequences		GFP · linear DN	NA cre	eator Clontech (Ta	аК				OPEN SEQUENCE	· UPLOADED TO MÍA
ш	0 0 0 0 0 0 0	Mixture		by concatenation		al IC10 dag								
Ð		Inventory	ß	Assemble DNA sequences by cloning			ar DNA	accession 1.091	26 marker An	an P lorganis	m Eschoric	hia coli		· UPLOADED TO MÍA
	Å	Legacy workflow				ref pmid:298547	70	accession Loon		lipix organis	Eschenci			
	۵	Request												
	<u>latal</u>	Dashboard												
•		More												Close

Remember to set **f** the folder **before** uploading your files.

> If you made a mistake, you can fix it by using the Move to option.

How to import sequences from a file

REATE NE						
	EW OPLOAD FILES	IMPORT FROM DATA	BASE SELECT CHROMO	SOMAL REGION		
pload an	ny DNA file (Genbank,	FASTA, ApE, Geneiou	ıs, SnapGene, SegBuilder	v15 or below, etc.) to m	nake a Benchling sequence. Drag i	n multiple at once!
	da tura *			Catifaldar		·
ucleotid			DNA	Set folder	Detvicio	
	DNA		KINA			
				the sum leavel and leavely a		
		^	Drag and drop files	to upload or cho	oose a file	
I 6		***	Drag and drop files	to upload or cho	pose a file	
l •		*	Drag and drop files	to upload or cho	oose a file	
Note: G	GenBank sequences u	se the LOCUS for the	Drag and drop files	to upload or cho	oose a file	
Note: G	GenBank sequences u	se the <i>LOCUS</i> for the	Drag and drop files	to upload or cho	ck here.	
Note: G	GenBank sequences u	se the <i>LOCUS</i> for the	Drag and drop files sequence name. To use th Edit Tags → A	to upload or cho e filename instead, cliu uto-annotate ≅	ck here.	Show errors or
Note: G	GenBank sequences us	se the <i>LOCUS</i> for the Set Topology -	Drag and drop files sequence name. To use th Edit Tags - A	to upload or cho e filename instead, cliv uto-annotate ≅	ck here.	Show errors or
Note: G	SenBank sequences us Dpen Move To Fector_pBR322.gb	se the LOCUS for the Set Topology - Linear Circular	Drag and drop files sequence name. To use th Edit Tags A	to upload or cho e filename instead, cliv uto-annotate ≅	ck here.	Show errors or
Note: C	GenBank sequences us Open Move To Sector_pBR322.gb	se the <i>LOCUS</i> for the Set Topology - Linear Circular	Drag and drop files sequence name. To use th Edit Tags ▼ A □	to upload or cho ne filename instead, cliu uto-annotate ≓	ck here.	Show errors or OAD DONE
Note: G	GenBank sequences us Open Move To Sector_pBR322.gb	Set Topology - Linear Circular DNA ACCESSION	Drag and drop files sequence name. To use the Edit Tags A A A CESSION C DEFINITION	to upload or cho ne filename instead, cliv uto-annotate = g vector	ck here.	Show errors or OAD DONE PLOADED TO PATRIC
Note: C	SenBank sequences us Open Move To Sector_pBR322.gb Exported - circular DRGANISM synthetic	Set Topology - Linear Circular DNA ACCESSION DNA SOURCE	Drag and drop files sequence name. To use th Edit Tags A Q A Q ACCESSION Q DEFINITION Syr ORGANISM	to upload or cho ne filename instead, cliu uto-annotate = g vector	ck here.	Show errors or OAD DONE PLOADED TO PATRIC
Note: C	SenBank sequences us Open Move To Sector_pBR322.gb Exported · circular DRGANISM synthetic	Set Topology - Linear Circular DNA ACCESSION DNA SOURCE	Drag and drop files sequence name. To use th Edit Tags ▼ A ↓ ✓ ACCESSION ✓ DEFINITION SYT ✓ ORGANISM ✓ ✓ SOURCE	to upload or cho e filename instead, cliu uto-annotate g vector	oose a file ck here. ش UPLO OPEN SEQUENCE - UF	Show errors or OAD DONE PLOADED TO PATRIC
Note: C	GenBank sequences us Open Move To Sector_pBR322.gb Exported - circular DRGANISM synthetic	Set Topology - Linear Circular DNA ACCESSION DNA SOURCE	Drag and drop files sequence name. To use th Edit Tags A Cell Cession Cell Cession Syr ORGANISM Syr ORGANISM Syr Create New Ta	to upload or cho e filename instead, cliv uto-annotate g vector	ck here.	Show errors or OAD DONE PLOADED TO PATRIC

When uploading a sequence, it is possible to:

(i) Change its topology and edit the tags attached to your entity to make it easier to find.

How to import sequences from a file

EATE NE		ORT FROM DATABASE SELECT CHROMOSOMAL REGION	
pload any	y DNA file (Genbank, FAST	A, ApE, Geneious, SnapGene, SeqBuilder v15 or below, etc.) to make a	a Benchling sequence. Drag in multiple at once!
ucleotid	le type*	Set folder	
	DNA	RNA	Patricia
Note: G	enBank sequences use the	e LOCUS for the sequence name. To use the filename instead, click the et Topology - Edit Tags - Auto-annotate =	Show errors only
Note: G	enBank sequences use the pen Move To Sector_pBR322.gb	e LOCUS for the sequence name. To use the filename instead, click the et Topology Edit Tags Auto-annotate	TTE. Show errors only UPLOAD DONE
Note: G	enBank sequences use the pen Move To Se ector_pBR322.gb Exported - circular DNA	e LOCUS for the sequence name. To use the filename instead, click the et Topology ▼ Edit Tags ▼ Auto-annotate =	Tre. Show errors only UPLOAD DONE OPEN SEQUENCE · UPLOADED TO PATRICIA
Note: G	enBank sequences use the pen Move To Si ector_pBR322.gb Exported - circular DNA	et Topology Edit Tags Auto-annotate ACCESSION J01749 DEFINITION Cloning vector SOURCE synthetic DNA	
Note: G	enBank sequences use the pen Move To Se ector_pBR322.gb Exported - circular DNA RGANISM synthetic DNA	et Topology Edit Tags Auto-annotate ACCESSION J01749 DEFINITION Cloning vector SOURCE synthetic DNA	
Note: G	enBank sequences use the pen Move To Si ector_pBR322.gb Exported - circular DNA RGANISM synthetic DNA	et Topology Edit Tags Auto-annotate ACCESSION J01749 DEFINITION Cloning vector SOURCE synthetic DNA	

Select Feature Libraries to use in auto-annotation	\times	
Select all / Clear selection		
Select feature libraries		
Affinity Tags	n multiple at once	
annotations Eveline		
ART_GEN feature library		
BII-Parts		
Biobricks Biobricks available		
CAL-DR		
Chenxi		
e T CLED features shared CLED features	Show error	s onl
CM parts Parts for constructing MIA-CM strains	PLOAD DONE	
CM parts.csv (imported 02/24/2113:55:22)	UPLOADED TO PAT	RICIA
Common Plasmid Features Library of common plasmid features		
cPCR or PCR fragments		
CPE Plasmid Features	c	lose
Default Features		

You can auto - annotate the sequence from an existing list of features.

Create DN

🔽 Оре

This can also be done in bulk when • using the expanded view of the selecting multiple entities at once

First steps: Create and import the building blocks to create the DNA construct

Import of sequences from a file

load	any DNA fi	le (Genbank, F	ASTA, ApE, Geneious, SnapGene	, SeqBuilder v15 or below, etc.) to make	e a Benchling sequence. Drag in multiple at once				
icleo	tide type*			Set folder					
	D	NA	RNA	RNA Patricia					
	Open	Move To	Set Topology 👻 Edit Tag	gs ▾ Auto-annotate 📑	Show errors onl				
	Vector_p	BR322.gb			UPLOAD DONE				
	Vector_p	<i>BR322.gb</i> ted ∙ circular D	NA ACCESSION J01749	DEFINITION Cloning vector	UPLOAD DONE				

Create DNA / RNA 🚔 Add items to entity worklist 🛛 👋	×
REATE NEW LOAD New worklist Existing worklist	
Jpload ny DNA file (Ger Worklist Name	n multiple at once!
Accleotide type* Project_training	
Selected items	
Add items to worklist	
Note: GenBank seque	
☑ Open Move To Set Topology ▼ Edit Tags ▼ Auto-annotate ≅	Show errors only
Vector_pBR322.gb	LOAD DONE
Exported circular DNA ACCESSION J01749 DEFINITION Cloning vector OPEN SEQUENCE · U	PLOADED TO PATRICIA
ORGANISM synthetic DNA SOURCE synthetic DNA	
	Close

 You can also create worklists or add to existing ones to find your currently used entities faster.

3. The basics of sequences 3.2 Sequence visualization

RELEVANT

pUC18

2686 bp

Create PDF 🔹 🗸 🔍

Different viewing options:

Different viewing options:

<u> </u>								Create - An		Create PDE	* • 0
-) +	U.					1301 1			Copy	Create FDF	••• •
	Nde	eI I				Kası					
ATTGTACTGAGA	GTGCACCATA	TGCGGTGTGAA	ATACCGCACA	GATGCGTAAGGA	GAAAATACCGC	ATCAGGCGCCATTCGC	CATTCAGGCTGCGCAACTGTTG	GGAAGGGCGATCGGTGCGG	GCCTCTTCGCTATTA	CGCCAGCTGGCG	AAAGGGGG
TAACATGACTCT	CACGTGGTAT	ACGCCACACTT	TATGGCGTGT	CTACGCATTCCT	CTTTTATGGCG	TAGTCCGCGGTAAGCG	STAAGTCCGACGCGTTGACAAC(CCTTCCCGCTAGCCACGCC	CCGGAGAAGCGATAAT	GCGGTCGACCGC	TTTCCCCC
						1ac2α	1	I	1		<>>
	180		200	2	20	240	260	280	300		320
							HineTT	Acc65I	EcoPT		
							HINCII	I SPML	ECORI		
							AccI	₿soBI	ApoI		
						BspM	AccI I Sall	BsoBI XmaI	ApoI BanII		
						BspN ₿fu/ HindIII	AccI I Sall I SbfI SphI PstI Xbal B	BsoBI XmaI AvaI Ec amHI SmaI KppI	ApoI BanII o53kI SacI		
						BspM Bfu/ HindIII	AccI I Sall I SbfI SphI PstI XbaI B	BsoBI XmaI AvaI Ec amHI SmaI KpnI	ApoI BamII ¢53kI SacI		
TGCTGCAAGGCG	GATTAAGTTGG	GTAACGCCAGG	GTTTTCCCAG	TCACGACGTTGT	AAAACGACGGC	Bsph Bfu/ HindIII CAGTGCCAAGCTTGCA GGTCACGGTTCGAACGT	A¢CI I Sall I SbfI SphI PstI XbaI B GCCTGCAGGTCGACTCTAGAGG CGGACGTCCAGCTGAGATCIC	BsoBI XmaI AvaI Ec amHI SmaI KpnI GATCCCCGGGTACCGAGCT CTAGGGGCCCATGGCTCG4	ApoI BamII 053kI SacI ICGAATTCGTAATCAT	GGTCATAGCTGT	TTCCTGTG
TGCTGCAAGGCG	GATTAAGTTGG CTAATTCAACC	GTAACGCCAGG CATTGCGGTCC	GTTTTCCCAG	TCACGACGTTGT AGTGCTGCAACA	AAAACGACGGC TTTTGCTGCCG M13 fwd	BspM Bfu/ HindIII CCAGTGCCAAGCTTGCA GGTCACGGTTCGAACGT	AccI I Sall I SbfT SphI PstI Xbal B GCCTGCAGGTCGACTCTAGAGG CGGACGTCCAGCTGAGATCTCC MCS	BsoBI XmaI AvaI Ec amHI SmaI KpnI GATCCCCGGGTACCGAGC1 CTAGGGGCCCATGGCTCGA	ApoI BahII 653kI SacI ICGAATTCGTAATCAT AGCTTAAGCATTAGTA	GGTCATAGCTGT CCAGTATCGACA	TTCCTGTG AAGGACAC V
TGCTGCAAGGCG ACGACGTTCCGC	GATTAAGTTGG CTAATTCAACC	GTAACGCCAGG CATTGCGGTCC	GTTTTCCCAG	TCACGACGTTGT AGTGCTGCAACA	AAAACGACGGC TTTTGCTGCCG M13 fwd	BspM Bfu/ HindIII CCAGTGCCAAGCTTGCA SGTCACGGTTCGAACGT lacZα	AccI I Sall I SbfI SphI PstI XbaI B GCCTGCAGGTCGACTCTAGAGG CCGGACGTCCAGCTGAGATCTCC MCS	BsoBI XmaI AvaI Ec amHI SmaI KpnI GATCCCCGGGTACCGAGCT CTAGGGGCCCATGGCTCG/	ApoI BahII \$53KI \$a¢I ICGAATTCGTAATCAT AGCTTAAGCATTAGTA	GGTCATAGCTGT CCAGTATCGACA M13 re	TTCCTGTG AAGGACAC V
TGCTGCAAGGCG ACGACGTTCCGC	GATTAAGTTGG CTAATTCAACC	GTAACGCCAGC CATTGCGGTCC	GTTTTCCCAG CAAAAGGGTC	TCACGACGTTGT AGTGCTGCAACA	AAAACGACGGC TTTTGCTGCCG M13 fwd	BspM Bfu/ HindIII cCAGTGCCAAGCTTGCA GGTCACGGTTCGAACGT lacZα 400	AccI I Sall I ShTI SphI PSTI XbaI B GCCTGCAGGTCGACTCTAGAGG CCGGACGTCCAGCTGAGATCTCC MCS 420	BsoBI XmaI AvaI Ec amHI SmaI KpNI SATCCCCGGGTACCGAGCT CTAGGGGCCCATGGCTCGA	ApoI BanII \$53KI \$acI CGAATTCGTAATCAT AGCTTAAGCATTAGTA	GGTCATAGCTGT CCAGTATCGACA	TTCCTGTG AAGGACAC V
TGCTGCAAGGCG ACGACGTTCCGC	GATTAAGTTGG CTAATTCAACC	GTAACGCCAGG CATTGCGGTCC	GTTTTCCCAG CCAAAAGGGTC I 360	TCACGACGTTGT AGTGCTGCAACA 38	AAAACGACGGC TTTTGCTGCCG M13 fwd	Bsph Bfu/ HindIII ccaGTGCCAAGCTTGCA GGTCACGGTTCGAACGT lacZα 400	AccI I Sall SphI PstI XbaI B GCCTGCAGGTCGACTCTAGAGG CGGACGTCCAGCTGAGATCTCC MCS	BsoBI XmaI AvaI Ec amHI SmaI KpnI GATCCCCGGGTACCGAGCT CTAGGGGCCCATGGCTCGA	ApoI BahII \$53kI Sa¢I ICGAATTCGTAATCAT AGCTTAAGCATTAGTA	GGTCATAGCTGT CCAGTATCGACA M13 re	TTCCTGTG AAGGACAC V 480
TGCTGCAAGGCG ACGACGTTCCGC	SATTAAGTTGG CTAATTCAACC 340 GCTCACAATTC	GTAACGCCAGG CATTGCGGTCC	GTTTTCCCAG CCAAAAGGGTC I 360 CGAGCCGGAA	TCACGACGTTGT AGTGCTGCAACA T 38 GCATAAAGTGTA	AAAACGACGGC TTTTGCTGCCG M13 fwd a AAGCCTGGGGT	BspM Bfu/ HindIII CCAGTGCCAAGCTTGCA SGTCACGGTTCGAACGT lacZα 400	AccI I Sall I SbfI SphI PstI Xbal B GCCTGCAGGTCGACTCTAGAGG CCGGACGTCCAGCTGAGATCTCC MCS I 420	BsoBI XmaI AvaI Ec amHI SmaI KpnI GATCCCCGGGTACCGAGCT CTAGGGGCCCATGGCTCG/ I 440	ApoI BahII \$53KI \$acI ICGAATTCGTAATCAT AGCTTAAGCATTAGTA 460 STCGGGAAACCTGTCG	GGTCATAGCTGT CCAGTATCGACA M13 re	TTCCTGTG AAGGACAC V 480 TAATGAAT
TGCTGCAAGGCG ACGACGTTCCGC AATTGTTATCCG	SATTAAGTTGG CTAATTCAACC 340 GCTCACAATTC	GTAACGCCAGG CATTGCGGTCC CACACAACATA GTGTGTTGTAT	GTTTTCCCAG ICAAAAGGGTC I 360 ICGAGCCGGAA IGCTCGGCCTT	TCACGACGTTGT AGTGCTGCAACA	AAAACGACGGC TTTTGCTGCCG M13 fwd AAGCCTGGGGT TTCGGACCCCA	BspM Bfu/ HindIII CCAGTGCCAAGCTTGCA GGTCACGGTTCGAACGT IacZα 400	AccI I Sall I ShfI SphI PSTI XbaI B GCCTGCAGGTCGACTCTAGAGG CCGGACGTCCAGCTGAGATCTCC MCS MCS 420	BsoBI XmaI AvaI Ec amHI SmaI KpnI SATCCCCGGGTACCGAGCT CTAGGGGCCCATGGCTCGA 440 CTCACTGCCCGCTTTCCAC GAGTGACGGGCGAAAGGTC	ApoI BahII \$53KI \$acI CCGAATTCGTAATCAT AGCTTAAGCATTAGTA 460 STCGGGAAACCTGTCG CAGCCCTTTGGACAGC	GGTCATAGCTGT CCAGTATCGACA M13 re TGCCAGCTGCAT	TTCCTGTG AAGGACAC V 480 TAATGAAT ATTACTTA
TGCTGCAAGGCG ACGACGTTCCGC AATTGTTATCCG TTAACAATAGGC lac opera	SATTAAGTTGG CTAATTCAACC 340 SCTCACAATTC SGAGTGTTAAG ator	GTAACGCCAGG CATTGCGGTCC CACACAACATA GTGTGTTGTAT	GTTTTCCCAG CAAAAGGGTC 1 360 CGAGCCGGAA GCTCGGCCTT 1ac pro	TCACGACGTTGT AGTGCTGCAACA 38 GCATAAAGTGTA CGTATTTCACAT noter	AAAACGACGGC TTTTGCTGCCG M13 fwd AAGCCTGGGGT TTCGGACCCCA	HindIII CCAGTGCCAAGCTTGCA SGTCACGGTTCGAACGT lacZα 400	AccI I Sall I SbfT SphI PStI XbaI B GCCTGCAGGTCGACTCTAGAGG CCGGACGTCCAGCTGAGATCTCC MCS 420 ACTCACATTAATTGCGTTGCGG	BsoBI XmaI AvaI Ec amHI SmaI KpnI GATCCCCGGGTACCGAGCT CTAGGGGCCCATGGCTCG/ 440 CTCACTGCCCGCTTTCCAC GAGTGACGGGCGAAAGGTC	ApoI BahII \$53kI \$a¢I ICGAATTCGTAATCAT AGCTTAAGCATTAGTA 460 GTCGGGAAACCTGTCG CAGCCCTTTGGACAGC	GGTCATAGCTGT CCAGTATCGACA M13 re M13 re STGCCAGCTGCAT CACGGTCGACGTA	TTCCTGTG AAGGACAC V 480 TAATGAAT ATTACTTA
TGCTGCAAGGCG ACGACGTTCCGC AATTGTTATCCG TTAACAATAGGC lac opera	GATTAAGTTGG CTAATTCAACC 340 GCTCACAATTC CGAGTGTTAAG ator	GTAACGCCAGG CATTGCGGTCC CACACAACATA GTGTGTTGTAT	GTTTTCCCAG CCAAAAGGGTC 360 CGAGCCGGAA GCTCGGCCTT 1ac pro 120	TCACGACGTTGT AGTGCTGCAACA T 38 GCATAAAGTGTA CGTATTTCACAT Toter	AAAACGACGGC TTTTGCTGCCG M13 fwd a AAGCCTGGGGT TTCGGACCCCA	BspM Bfu/ HindIII ccAGTGCCAAGCTTGCA GGTCACGGTTCGAACGT lacZα 400 FGCCTAATGAGTGAGCT CCGGATTACTCACTCGA	AccI I Sall SphI PstI Xbal B GCCTGCAGGTCGACTCTAGAGG CGGACGTCCAGCTGAGATCTCC MCS MCS I 420 MACTCACATTAATTGCGTTGCGG TGAGTGTAATTAACGCAACGC	BsoBI XmaI AvaI Ec amHI SmaI KpnI GATCCCCGGGTACCGAGCT CTAGGGGCCCATGGCTCGA 440 CTCACTGCCCGCTTTCCAC GAGTGACGGGCGAAAGGTC	ApoI BahII \$53KI \$acI ICGAATTCGTAATCAT AGCTTAAGCATTAGTA 460 STCGGGAAACCTGTCG CAGCCCTTTGGACAGC	GGTCATAGCTGT CCAGTATCGACA M13 re M13 re	TTCCTGTG AAGGACAC V 480 TAATGAAT ATTACTTA

1 PRO TIP:

Click on "*split workspace*" to change the viewing mode to split screen/full screen

Sequence *navigation*:

Sequence *navigation*:

- Click on any element or annotation in any of the views to select the corresponding sequence fragment
- See the electrochemical properties of the fragment on the bottom

PRO TIP:

Click on *"melting temperature"* to access the parameter settings. Different calculation algorithms are available.

3.2 Sequence visualization

Sequence navigation:

3.2 Sequence visualization

3. The basics of sequences 3.3 Sequence annotation

Sequence annotations

 Annotations are automatically imported with your sequences when uploading from databases and files

Sequence annotations

the *"edit feature libraries"* and *"auto-annotate"* options at any time to create your own annotations list or use an existing one on your sequence

You can access

Be aware that the libraries are shared within the Center so don't edit libraries that don't belong to you

3.3 Sequence annotation

3. The basics of sequences 3.4 Codon optimization

View, annotate and edit your sequences

How to codon optimize a gene of interest for the host you want to express it in

) Open the file with your gene of interest (2)

Select the gene (for example, by clicking its annotation)

How to codon optimize a gene of interest for the host you want to express it in

Select the newly created translation and codon optimize it

Create • Analyze • Copy Create PDF • • Q	Region: 1797-3242 (Forward Strand)	
Run Primer3	6 Set the parameters of interest	86
agctcgaccaatcccgtttgctcgatccggagggggtcgcgagcagggc tggactgatcaatcccgtttgctcgatcaggcgtcgcgagcagggc Submit to NCBI BLAST	Parameters	0.0
ORF2 CDS Canoul-CoA hyd	Organism 💿 Escherichia coli (K12) 🗸	t,
Source Optimize codons > Forward	Only supports standard genetic code	©
I I I I Reverse 1,630 1,640 1,650 1,660 1,670 1,680 1,690 Reverse	GC Content Any (0 to 1)	_
ApaI	Uridine 💿 🔹 mRNA Uridine Depletion	-
tgcagacctacaagcgctgataaatgcgcgggggccctcgctgcgcccccgggccttccaataatgacaataatgaggagtgcccaatgt acgtctggatgttcgcgactatttacgcggcccccgggagcgacgcggggggccggaaggttattactgttattactcctcacgggttaca	Hairpin Parameters Avoid Hairpins 20 200 200 AvoidED CUT SITES (0) PRESERVED CUT SITES (0) PROTECTED REGIONS (0) PATTERNS TO REDUCE (0) For the specified enzymes, existing cut sites will be removed and no new cut sites will be created.	↔ €
ORF2 gene ORF2 CDatase) repeat_region >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Enzyme Name Cuts	
source >>> I<	Select an enzyme below to avoid creating its recognition site in the optimized sequence.	
	+ Add cut site to avoid	
BsaAI PmlI		
tcacgtgcccctgcttattggtggtaagccttgttcagcatctgatgagcgcaccttcgagcgtcgtagcccgctgaccggagaagtgg agtgcacggggacgaataaccaccattcggaacaagtcgtagactactcgcgtggaagctcgcagcatcgggggactggctcttcacc 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 F H V P L L I G G K P C S A S D E R T F E R R S P L T G E V	Cancel Preview optimization	F
		DACE

- When codon optimizing, its possible to select the GC content and other details
- You can select cut sites to avoid or remove in your optimized sequence
DTU

View, annotate and edit your sequences

How to **codon optimize** a gene of interest for the host you want to express it in

Take a look at the changes made and save the new optimized CDS sequence

SEQUENCE MAP	LINEAR MAP CODON OP	PTIMIZATION × DESCRIPTION	METADATA RELEV	ANT ITEMS ***	🖸 Share 📑
← ← ← Create ▼ Analyze ▼ Copy Create PDF ♥ ▼ Q XmnI	Optimization preview This is a summary of the oparameters.	optimized sequence. You can save	this sequence or go ba	ack and modify your optimization	on 🦋
aagctcgaccaatcccgtttgctcgatccggaaggcggtcgcggggcgggggcatgaagcagttccttgacgagaaaagcatcaagccgggc	Metric		Before	After	
ORF2 gene ORF2 mene	Rare codons 🕐		14	10	≓
ORF2 CDS (enoy1-CoA hydratase)	GC content		58%	58%	
source //	Uridine content		24%	22%	C
1,630 1,640 1,650 1,660 1,670 1,680 1,690 1,700 1,710	Hairpins 📀		0	0	=
ApaI Recolut	Location	Original	Opti	mized	
r spoin	1815	$CTT \rightarrow L (0.12)$	TTA	→L (0.15)	*
ttgcagacctacaagcgctgataaatgcgccgcggggccctcgctgcgcccccggccttccaataatgacaataatgaggagtgcccatgt	1824	$GGT \rightarrow G (0.29)$	GGC	→G (0.46)	0
aacgiileggalgiilegegactalliacgeggeceeggggegalgeggggeggalgeggggelggaaggilallacigilallaciicilealgggulada	1827	AAG →K (0.27)	AAA	→K (0.73)	
W ORF2 gene	1830	$CCT \rightarrow P (0.17)$	CCG	→ P (0.55)	
Source	1842	TCT \rightarrow S (0.11)	AGC	→ s (0.33)	
I I I I I I I I I I I I I I I I I I I	1848	$GAG \rightarrow E$ (0.3)	GAA	→ E (0.7)	
BsaAI	1854	ACC \rightarrow T (0.47)	ACT	→T (0.16)	
PmlI ttoagetecccetecttattggtggtaagecttgttcageatetgatgagegeacettcgagegtcgtageegetgaceggagaagtgg	1860	$GAG \rightarrow E$ (0.3)	GAA	→ E (0.7)	
aagtgcacggggacgaataaccaccattcggaacaagtcgtagactactcggggaagctcgcagcatcgggcgcattggcctcttcacc 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 F H V P L L I G G K P C S A S D E R T F E R R S P L T G E V	Back		Save	Save as new sequence	
BASES 3544 START 1797 END 3242 LENGTH 1446 GC 58.44% MELTING TEMP 83.4 °C				ASSEMBLY WIZARD SPL	IT WORKSPACE

 You can keep the changes by saving the new sequence as a new entity or overwriting/editing your original sequence

4. Benchling access and folder setup

LET'S MOVE TO BENCHLING TO START THE HANDS-ON!

Access Benchling:

biosustain.benchling.com

(login with DTU credentials)

Create a training folder to work in

Create folder	>
Name*	Location*
Your name	Molecular Biology Training
	4

 Remember to select your own training folder when creating or importing sequences

Copy the Training Files folder into your own

Projects / Biosustain Training /							
Molecular Biology Training 🏟 🛛 Saved Sea	rches 🗸						
Q Search		Type: Folder, Entr	y, Dataset 🗸	⊋ 1 filter	Save	imes Clear	2 Copy to
$\langle \rangle$ 1-2 of 2 items, including items in subfolders						1 row selecte	
Name	1	Starred 个	Owner		Mo	odified \downarrow	Review Proces
Training Files		*	DTU Biosus	tain	03	8/02/2025	
Your Name		*	DTU Biosus	tain	03	8/02/2025	

Сору То	×
Item is currently in: 📗 Molecular Biology Training	
rojects	
Filter	
🕶 🚖 Biosustain Training biosustain	
Ester	
Inventory	
🖿 Joana	
Molecular Biology Training	
✓ Your Name 3	
reate new folder (biosustain / Biosustain Training / Molecular Biology Training / Your N	Name)

Do not modify the *Training Files* folder! Make sure you are **copying it**, and **not moving** its contents.

DTU

The Training Files [Results] folder

6

You can find the **expected outputs** for each part of the hands-on in this folder, such as annealed primers, finalized assemblies and resulting constructs.

	Projects / Biosustain Training / *Molecular Biology Tra	ining /				
	*Training Files [Results] 🔅 Saved Searches	~				
	Q Search	∑ Type ∨	∓ Filters			
	$\langle \rangle$ 1-4 of 4 items $\frac{1}{\sqrt{2}}$					Image: Second se
	□ Name ↑	Starred 个	Owner	Modified \downarrow	Review Proces	Description
	1. Basic construct assembly		DTU Biosustain	10/02/2025		Includes: Primer design, i
	2. Combinatorial cloning		DTU Biosustain	10/02/2025		
	3. CRISPR tools		DTU Biosustain	09/02/2025		Includes: gRNA design an
	4. Sequence alignments		DTU Biosustain	09/02/2025		
172						

5. Basic construct assembly

This is the first part of the *hands-on* example.

Cloning vector design

Creation of > expression vector library Gene knockout using CRISPR/Cas9

Sequence alignment

alsS and alsD from Bacillus subtilis

- ✓ Primer design
- ✓ In silico PCR
- ✓ Virtual digestion
- ✓ RE-based cloning

Expected output:

- alsSD fwd and rev primers
- alsSD PCR product
- Saved BamHI + Sall digestions for the alsSD PCR product and pUC18
- pUC18-alsSD plasmid

Q

You will need the files in the **Basic construct assembly** subfolder.

DTU

0

••• / Your Name / Training Files /	- alsSD source ×	
1. Basic construct assembly > +	SEQUENCE MAP DESCRIPTION	METADATA DNA FRAGMENT BATCH LINEAR MAP RESULTS *** C Share
	+ Create ∨ Analyze ∨ Copy : ✿ ∨ Q	+ Create PDF ♥ < Q
Q Search	tagtgaaacttatcacaagatatttaaaattttacgtttaaaatgc atcactttgaatagtgttctataaattttaaaatgcaaattttacg	alsSD source (3326 bp) BtgI BssSI Bsp1286I BsrBI
alsSD source Last modified 9 minutes ago	95 100 105 110 115 120 125 130 135	Tth111I BsiHKAI BssSql Pf1FI BsrGI BlpI AlwNI StuI Tati FspI Bpu101 MlvI AhdI BsrDI BspHI SphI
Last modified 9 minutes ago	ataataaggagtgagggtgatgacaaaagcaacaaaagaacaaaaa tattattcctcactcccactactgttttcgttgttttcttgttttt 2 4 6 8 M T K A T K E 0 K	PleI XbaI StyI EcoRI PshAI BpuEI PsiI EagI KpnI NmeAIII XmnI AgeI SmlI Bts∝I PciI Acc65I HpaI BsmFI BaeI BsaAI BtsI ≞
	alsS CDS	500 1,000 1,500 2,000 2,500 3,000 alsS CDS alsD CDS ywS
	alsS gene >> 1 <td< th=""><th></th></td<>	
	tcccttgtgaaaaacagagggcggagcttgttgttgattgcttag agggaacactttttgtctccccgcctcgaacaacaactaacgaatc 10 12 14 16 18 20 22 24 S L V K N R G A E L V V D C L alsS CDS	
	BASES 3326 INSERT 154	ASSEMBLY _ SPLIT WORKSPACE

DTU

5. Basic construct assembly 5.1 Primer design 5.1.1 Manual primer design

Manual primer creation

Scenario: Creating primers to add restriction sites to *alsSD*

Select ~ 22 bases at the start of alsS

Create ∨ Analyze ∨ Copy : ♥ ∨ Q	Create PDF ♥ ✓ Q
tagtgaaacttatcacaagatatttaaaattttacgtttaaaatgc atcactttgaatagtgttctataaattttaaaatgcaaattttacg 	alsSD source (3326 bp) BtgI BssSI Bsp1286I BsrBI
95 100 105 110 115 120 125 130 135	Tth111I PRIMERS PAIRS PflFI StuI Manual Ice
ataataaggagtgagggtgatgacaaaagcaacaaaagaacaaaaa tattattcctcactcccactactgttttcgttgttttcttgttttt 2 4 6 8 M T K A T K F 0 K	PleI Xt EagI Kr PciI Ac Attach Existing
alsS CDS	500 1,000 1,500 2,000 2,500 3,000 alsS CDS alsD CDS ywS alsS gene alsD gene ywe
alsS gene »>	-
140 145 150 155 160 165 170 175 1 80	2 Access the primer tool and start to create a new primer manually
tcccttgtgaaaaacagaggggcggagcttgttgttgattgcttag	
agggaacactittgtctccccgcctcgaacaactaactaacgaatc 10 12 14 16 18 20 22 24 S L V K N R G A E L V V D C L	

You can also attach already existing primers to your sequence if the entities

are uploaded on Benchling

5.1 Primer design

Manual primer creation

Look up **BamHI** restriction site in the *Cut site* dropdown menu

Copy and paste the site at the beginning of the forward primer, and set the **overhang** to 6

Strand	Forward	Reverse	Stra	nd	Forward		Reverse	
Bases	5' GGATCCatgacaaaagca acaaaagaac 3'	5' ttattcagggcttccttc agtt	Ba 3'	es (5' GGATCC <mark>atgacaaaagca</mark> acaaaagaac	5' 3'	GTCGAC ttattcagggct tccttcagtt	3
3' Location	179	2678	3' Locat	on	179		2678	
Overhang	6	0	Overha	ng	6		6	
Cut Site	BamHI GGATCO	c	Cut S	ite	Sall 🔻 G	TCGAC		
	Use the dropdown above to look up	restriction sites.			Use the dropdown above to l	ook up re	estriction sites.	
				Do	post the process to	add	a Call cita at	

Manual primer creation

Name, select a location for your primers and save them

Manual primer creation

PRO TIP: Benchling offers the possibility to visualize **secondary structures** of your primers

5. Basic construct assembly 5.1 Primer design 5.1.2 Primer wizard

Automatic primer creation – Primer Wizard

✓ Benchling has a tool for automatic primer creation called the **Primer Wizard**. To try it out, follow these steps:

PRO TIP: Select both sequences by holding **Shift** while you click on the second one

DTU a

Construct design

Center for Biosustainability

DTU a +

Construct design

Automatic primer creation – Primer Wizard

Explore the primer options. You do not need to save them to continue with the next part of this tutorial.

It is possible to select primers independently of their pair, so you can mix and match as you need!

> By default, sorting is done based on Pimer3 penalty score.

The lower the penalty, the better the primer pair

5. Basic construct assembly 5.2 *In-silico* PCR

DTU

In-silico PCR: Create a PCR product

✓ We will do an *in-silico* PCR using the primers created **manually**, to add the **BamHI** and **SalI** restriction sites.

- ✓ You can select what features to copy into the new DNA sequence that will be generated by the in-silico PCR
- ✓ The new entities will be saved by default in the folder that contains the original sequence

In-silico PCR: Create a PCR product

 \odot

5.2 In-silico PCR

5. Basic construct assembly 5.3 Virtual digestion

Virtual digestion

We will run two virtual digestions to create the **compatible sticky ends** for RE-based cloning in our gene of interest and the backbone (pUC18)

Digestion of the backbone (open the pUC18 sequence)

✓ The REs selected for this example are BamHI and SalI, which are single cutters in the MCS of pUC18.

5.3 Virtual digestion

Virtual digestion

Center for Biosustainability

PRO TIP: Click on any fragment of the sequence to select the enzyme list relevant to that fragment

5.3 Virtual digestion

Virtual digestion

Digestion of the backbone

Digest		S	lave	S	ave	the d	igestio	on	~	🗸 Use HF 🕜	J
Enzyn	nes	с	uts	Ten	ıp.	1.1	2.1	3.1		4/CS	0
BamH	I	1		37°	С	100	50	10		100	0
Sall		1		37°	С	10	100	10	0	100	=
Start	End	Length	Left Cu	tter	Left Ov	/erhang	Right Cut	tter	Right	Overhang	0
418	429	12	Sall		5'		BamHI		5'		
130	417	2674	BamHI		5'		Sall		5'		=
											4

 A saved digestion will allow you to easily find the fragments you need to work with for the assembly

Digestion of the insert

🖸 Share

4/CS

100

100

Right Overhang

1.1

100

10

Left Overhang

blunt

5'

5'

2.1

50

100

BamHI

Sall

None

Right Cutter

3.1

10

100

5'

5'

blunt

Virtual digestion

Gel visualization

- ✓ After running both digestions, you can easily visualize the resulting fragments in a simulated electrophoresis gel.
- 1st lane: Ladder
- 2nd lane: Backbone
- 3rd lane: Insert
 - If you click on the bands, you can easily select the DNA sequences that correspond to the digested fragments

Virtual digestion

DTU

5. Basic construct assembly 5.4 Assembly Wizard

Construct Assembly

Assembly Wizard

The Assembly Wizard allows you to use the following assembly strategies:

- ✓ Digest and Ligate (restriction enzyme-based cloning)
- ✓ Gibson assembly (no need for restriction enzymes)
- ✓ Golden Gate

Digest and Ligate: Locate the Assembly Wizard work environment

DTU

Q

~

another

Construct Assembly

DTU

Q

Digest and Ligate: Add the backbone

✓ The Assembly Wizard shows the digested ends of the backbone

Construct Assembly

Digest and Ligate: Add the insert

Construct Assembly

Digest and Ligate: Check for compatibility

- ✓ The assembly wizard will check for compatibility between sticky ends.
- Depending on the orientation of your backbone and insert, you might need to make adjustments such as in this case!

Construct Assembly

Digest and Ligate: Assemble

DTU

Q

5.4 Assembly Wizard

6. Combinatorial cloning: Golden Gate

Creation of

expression vector

library

Terminators

Promoters

RBSs

als

Cloning vector

design

✓ Combinatorial cloning:
 Golden Gate

Expected output:

Gene knockout

using

CRISPR/Cas9

- alsS expression vector library
 (combinatorial cloning assembly file)
- 27 resulting vector combinations

This is the second part of the *hands-on* example.

Sequence

alignment

You will need the files in the *Combinatorial cloning* subfolder.

DTU

0

Q

Construct Assembly

Worklist creation

PRO TIP:

Creating a worklist can make it easier to find your most used files!

 / Your Name / Training Files /2. Combinatorial cloning 	Saved Searches 🗸	< +	$\stackrel{h}{=}$ Add items to entity worklist $ imes$
 Q Search ✓ > 1-12 of 12 items ≋ 	Image: Second s	Add items to worklist 11 rows selected	New worklist Existing worklist
Name	1 Inventory ID	\downarrow Modified \downarrow Authors Description	alsS EVL
✓ alsS		11/02/2025 Mía López Portillo	Selected items
alsS expression vector libra	ry	17/02/2025	- alsS Z pET-Ori-KanR - promoter-01-T5 - promoter-02-tac
PET-Ori-KanR	No inventory availa	11/02/2025 Mía López Portillo	- promoter-03-T7 - RBS-01-B0030 - RBS-02-B0032 - RBS-03-B0034
promoter-01-T5		11/02/2025 Mía López Portillo	- terminator-01-rrnBT1 - terminator-02-T0 - terminator-03-T7
promoter-02-tac		11/02/2025 Mía López Portillo	4
promoter-03-T7		11/02/2025 Mía López Portillo	Add items to worklist
RBS-01-B0030	No inventory availa	11/02/2025 Mía López Portillo	
RBS-02-B0032	No inventory availa	11/02/2025 Mía López Portillo	Worklist 'alsS EVL' was created with 11 items χ

Select the sequence files in the **Combinatorial cloning** folder

Combinatorial Cloning Tool

 \checkmark An alternative to the Assembly Wizard is the **Combinatorial Cloning** tool

It allows you to work with several cloning methods:

- ✓ Golden Gate
- Gibson \checkmark
- ✓ Homology
- ✓ This tool is especially useful for **designing** many constructs at once

O Go	Iden Gate assembly	×											
METADA	TA OVERVIEW									CONSTRUCTS			
Golder	Go Gate assembly GO	LDEN GATE						Provide fe	edback	Constructs			
1 TI	his is a read-only record	of a finalized asse	mbly.							Q			
Bins & S	ipacers (3)									X backbone-pro	omoter001-gene001	∑ backbone-promoter001-gene002 × ³	Z backbone-promoter001-gene003 ✓
BIN 1 Backb Use X 1 fra	existing cut sites V	BIN 2 Promoter Use existing X 3 fragments	g cut sites 🗸 🗸	BIN 3 Gene Use exist X 8 fragme	ting cut sites V	→ Const 0 24	tructs constructs			-90	i i	1	1
宮 Fra	gments								~	300	v v,	Jang ,	3869
	Sequence	Bin	Start	End	Length	Orientation	Type IIS	enzyme	Frag	No associated primer	5	No associated primers	No associated primers
1	X backbone	Backbone	2248	3314	1067	Forward	Bsal		Use				
2	Z promoter001	Promoter	8	328	321	Forward	Bsal		Use	X backbone-pro	omoter001-gene004	x backbone-promoter001-gene005 x ^a	Z backbone-promoter001-gene006
3	∑ promoter002	Promoter	8	366	359	Forward	Bsal		Use				
4	X promoter003	Promoter	8	315	308	Forward	Bsal		Use	1			
5	∑ gene001	Gene	8	4007	4000	Forward	Bsal		Use	Part.		. in the second s	and a
6	gene002	Gene	8	4191	4184	Forward	Bsal		Use		i și -	1	5
7	∑ gene003	Gene	8	4188	4181	Forward	Bsal		Use	- 8			-#
8	Z gene004	Gene	8	4004	3997	Forward	Bsal		Use			-8	
9	Z gene005	Gene	8	4188	4181	Forward	Bsal		Use	4	<i>.</i>	· 1.	* #
10	Z gene006	Gene	8	4004	3997	Forward	Bsal		Use	1995	0	3610	Jaas
11	X gene007	Gene	8	4001	3994	Forward	Bsal		Use				
12	X gene008	Gene	8	4185	4178	Forward	Bsal		Use	No associated primer	rs	No associated primers	No associated primers
0 co	nstructs								^	X backbone-pro	omoter001-gene007	E backbone-promoter001-gene008	∑ backbone-promoter002-gene001 **
	Name		Backbone	Overhang	Promoter	Overhan	g	Gene		anie		an	ada
1	X backbone-promoter	001-gene001	backbone	AACA	promote	r001 CGAT		gene001			-ie-	i i i i i i i i i i i i i i i i i i i	\$*
2	Z backbone-promoter	001-gene002	backbone	AACA	promote	r001 CGAT		gene002		.*			
3	X backbone-promoter	001-gene003	backbone	AACA	promote	r001 CGAT		gene003		- 3		-\$	
4	X backbone-promoter	001-gene004	backbone	AACA	promote	r001 CGAT		aene004		3		a. 1.	* *

DTU

Q

Construct Assembly

Combinatorial Cloning Tool: How to access it

6. Combinatorial Cloning

Combinatorial Cloning Tool: Configuration

Q

DTU

You can modify these parameters later (before finalizing the assembly)

6

(i)

The only thing you will not be able to modify later is the **cloning method**

DTU

Construct Assembly

Combinatorial Cloning Tool: Full view

— als	S	O alsS expression	n vector	library ×									
METADA	TA OVERVIEW CONST	RUCTS										53.22	
alsS ex Bins & S	pression vector library	GOLDEN GATE								Provide feedback	Assem	ible	
BIN 1 Backb	i ii ii ii	BIN 2	**	BIN 3 Insert 2	.	BIN 4 Insert 3	i :	BIN 5	≝ →	Constructs O constructs		Í	You can add multiple fragments to each bin
Use	existing cut sites 🗸 🗸	Use existing cut sites	~	Use existing cut	sites 🗸	Use existing co	it sites 🗸 🗸	Use existing cut sites	~				to create several
<mark>∑</mark> 0 fr	agments 🕂	🗶 0 fragments 🕂		📱 0 fragments 🕂	-	Z 0 fragments	+	🛛 0 fragments 🕂					combinations
в	7 ⊻ 5 Ø A ∨ Ē	* * ~											Will snow up nere
в		~ # ~					T	5		2 to the			(You can change some
1	Sequence			Linu Lengu	Fr	rward	Rsal	Use existing cut sites	method	Status		-	configurations)
								· · · · · · · · · · · · · · · ·					
1	Add rows										1 row		
O Co	nstructs							Status 🗸 View co	nstructs	🗃 🗸 Autopopulate 📟	م م	^ (i	When you're done
P	7 <u>U</u> 5 ∅ A ∨ Ξ	* * ~											adding your fragments
D	Name	Backbone		Overhang	Insert 1	Overhang	Insert	2 Overhang	Insert 3	Overhang	Insert 4	4	you can autopopulate
в													this table with all
1			\sim			~		×		~			

6. Combinatorial Cloning

Combinatorial Cloning Tool: Bins and spacers

1 You can **rename** the bins for better organization.

Bins & Spacers (5) +

BIN 1 💼 🗄 Backbone	BIN 2 💼 🗄 Promoter	$\begin{array}{ccc} \text{BIN 3} & & & & & \\ \text{RBS} & & & & \\ \end{array} \xrightarrow{\text{Constructs}} \\ & & \bigcirc & 0 \text{ constructs} \end{array}$
Use existing cut sites V	Use existing cut sites V Z 0 fragments	Use existing cut sites V X 0 fragments
BIN 4 III III IIII IIII IIII IIIII IIIIIIII	BIN 5 💼 ። Terminator Use existing cut sites 🗸	 ✓ For our example, rename your bins according to this
🗶 0 fragments 🕂	🗶 0 fragments 🕂	picture.

(1) You can choose whether to use **existing cut sites** or a **primer pair** in each bin

BIN 2		
Promoter		
Use a primer pair	~	(For our oxemple, set
Use existing cut sites Digest fragments at Type IIS enzyme cut sites to expose overhangs.		all bins except for the Backbone to use a primer pair .
Use a primer pair Use a primer pair to Introduce Type IIS enzyme cut sites and overhangs.		

(i) It is possible to add **spacers** (max. 20 nt) between bins, which will be incorporated in the primer design. At least one of the bins next to the spacer must be set to use a primer pair.

Bins & Spacers (5)	(+)		BIN 4	m ::	SPACER 1	BIN 5 💼 🗄 🗸	Spacers will not be
BIN 1	🖉 Add new bin	\rightarrow	CDS		Spacer	Terminator	used in our example.
Backbone	Add new spacer		Use a primer pair	~	AATTCGAT	Use existing cut sites 🗸	
			🛛 0 fragments 🕂				

15

 $\pmb{\diamond} \checkmark$

Golden Gate: Set fragments in corresponding bins

1. Backbone

Bins & Spacers (3) 	Add	fragment(s)					
BIN 1	Open sequences >	X p	ET-Ori-KanR	View: Linear map ~	+			x
Backbone	Search for sequences	28	End Orientation ✓ ₹ 3327 ∨ Forward ∨	8saI	(5	5420 bp) Bsal		
			BsaI	1,000	2,000	3,000	4,000	5,000
Use existing o	Add from worklist			medium cop	oy (pET) ori/KanR			bla
0 fragments	➡							
			Bsal					
from workligt	*		3.3 kb of 5.4 kb					
	^							Back Ado
= alsS EVL $ imes$								
alsS EVL ×								
E alsS EVL ×		~	Since this bin wa	as configured to u	se existin c	ı cut sites.	Benchling	has
 alsS EVL × Item alsS alsS pET-Ori-KanR 		✓	Since this bin wa	as configured to u aI sites in the sec	se existing uence and	g cut sites , automatical	Benchling	has the region

Golden Gate: Set fragments in corresponding bins

2. Inserts

Repeat the process for each bin following each category. Keep the entire sequences.

 Primers with appropriate overhangs will be designed for the assembly of these fragments following the position of the bins.

6. Combinatorial Cloning

Golden Gate: Verify the fragments

- ✓ You should obtain a table like this one.
- ✓ By clicking on a specific row, you will be able to edit the fragments if you need to do so. You can also change the bin a sequence corresponds to, and even remove sequences.

∦ Fr	agments							Status 🗸 Ec	dit fragments		🖬 🗙 Close
В	<u> </u>	≡ ∨ 🛊 ∨									
	Sequence	Bin	Star	End	Length	Orientation	Type IIS enzyme	Fragment production method	Preferred 5' primer	Preferred 3' primer	Status
1	Z pET-Ori-KanR	Backbone	28	3327 🗸	3300	Forward 🗸	Bsal	Use existing cut sites			🕗 Looks good
2	— promoter-01-T5	Promoter	~	45	45	Forward	Bsal	Use a primer pair			🕑 Looks good
3	— promoter-02-tac	Promoter	~	46	46	Forward	Bsal	Use a primer pair			🕑 Looks good
4	— promoter-03-T7	Promoter	~	36	36	Forward	Bsal	Use a primer pair			🕑 Looks good
5	- RBS-01-B0030	RBS ·	~	52	52	Forward	Bsal	Use a primer pair			🕑 Looks good
6	- RBS-02-B0032	RBS Y	~	50	50	Forward	Bsal	Use a primer pair			🕑 Looks good
7	- RBS-03-B0034	RBS Y	~	49	49	Forward	Bsal	Use a primer pair			🕑 Looks good
8	— alsS	CDS ·	~	1713	1713	Forward	Bsal	Use a primer pair			🕑 Looks good
9	- terminator-01- rrnBT1	e Terminator	~	110	110	Forward	Bsal	Use a primer pair			🕑 Looks good
10	- terminator-02- T0	Terminator	~	126	126	Forward	Bsal	Use a primer pair			O Looks good
11	- terminator-03- T7	Terminator	~	71	71	Forward	Bsal	Use a primer pair			O Looks good

Golden Gate: Populate the "constructs" table

Click the **"Autopopulate**" button to fill the **Constructs** table with all possible combinations of your fragments.

0 0	onstructs			Status 🗸 🕔	iew constructs	i ~ Autopopulate	··· • • •
в.	I ⊻ S Ø A∨ ≣∨ \$						
	Name	Backbone	Overhang	Promoter	Overhang	RBS	Overhang
1		~		~		~	
1	Add rows						1 row

✓ You can also create combinations **manually**, with the option of **skipping** bins if you wish to do so

✓ It's also possible to **remove** rows that you are not interested in.

Golden Gate: Finalize the assembly

5 Click the **"Assemble**" button to create primer (optional), fragment (optional) and plasmid files for all of your constructs.

	TA OVERVIEW CONSTRU	UCTS															
IsS e	(pression vector library	GOLDEN GATE	٥											Provide	e feedback Asse	mble	
BIN 1 Back Use	existing cut sites V	BIN 2 Promoter Use a prime X 3 fragment	er pair v	BIN 3 RBS Use a X 3 fra	primer pair v gments +	BIN 4 CDS Us X 1	4 min 5 se a primer pair fragment +	i ∷i BIN Tern V ∑ :	15 minato Ise a pr 3 fragm	or rimer pair nents +	ĭ :: → ×	Const O 27	tructs constructs				
∦ Fi	agments														11 rows 🕒 🖉	`	
o c	onstructs										Stat	tus 🗸	View constructs	💼 🗸 🛛 Autopopul	ate 🖬 🧷	^ Combi	natorial
В	<i>I</i> <u>Ψ</u> 5 <i>∅</i> A ∨ <u></u> ≡ ∨	÷														Cloning	g file cannot
В	I I S Ø A ∨ E ∨ Name		Backbone	Overhan	Promoter	C	Overhang R	BS	(Overhang	CDS		Overhang	Terminator	Overhang	Cloning	g file cannot anymore.
B 1	I 型 S & A v E v Name pET-Ori-KanR-promoter-01 B0030-alsS-terminator-01-	-T5-RBS-01- -rrnBT1	Backbone pET-Orl- KanR	Overhang✓ GGAG	Promoter promoter- 01-T5	с ~ т	Overhang RI TACC B	BS RBS-01- 0030	· · ·	Dverhang CCAT	CDS alsS	~	Overhang AACT	Terminator terminator- 01-rrnBT1	Overhang CGCT	Cloning edited	g file cannot anymore.
B 1 2	I 里 S Ø A<	-T5-RBS-01- rmBT1 -T5-RBS-01- T0	Backbone pET-Orl- KanR pET-Orl- KanR	 Overhang GGAG GGAG 	promoter promoter- 01-T5 promoter- 01-T5	с ~ т ~ т	Overhang R TACC B TACC B	BS RBS-01- 0030 RBS-01- 0030	 <	Dverhang CCAT CCAT	CDS alsS alsS	~	Overhang AACT AACT	Terminator terminator- 01-rrnBT1 terminator- 02-T0	Overhang CGCT CGCT	Cloning edited	g file cannot anymore.
B 1 2 3	I IJ S Ø A ∨ E ∨ Name pET-Ori-KanR-promoter-01 B0030-alsS-terminator-02- B0030-alsS-terminator-02- pET-Ori-KanR-promoter-01 B0030-alsS-terminator-02- pET-Ori-KanR-promoter-01 B0030-alsS-terminator-03-	-T5-RBS-01- rmBT1 -T5-RBS-01- T0 -T5-RBS-01- T7	Backbone pET-Ori- KanR pET-Ori- KanR	Overhang ✓ GGAG ✓ GGAG ✓ GGAG ✓ GGAG	y Promoter opromoter- o1-T5 opromoter- o1-75 opromoter- o1-75	 <td>Overhang RI TACC B TACC B</td><td>BS RBS-01- 0030 RBS-01- 0030 RBS-01- 0030</td><td> <</td><td>Dverhang CCAT CCAT CCAT</td><td>CDS alsS alsS alsS alsS</td><td>~</td><td>Overhang AACT AACT AACT</td><td>Terminator 01-rmBT1 terminator- 02-T0 terminator- 03-T7 V</td><td>Overhang CGCT CGCT CGCT</td><td>Cloning edited</td><td>g file cannot anymore.</td>	Overhang RI TACC B TACC B	BS RBS-01- 0030 RBS-01- 0030 RBS-01- 0030	 <	Dverhang CCAT CCAT CCAT	CDS alsS alsS alsS alsS	~	Overhang AACT AACT AACT	Terminator 01-rmBT1 terminator- 02-T0 terminator- 03-T7 V	Overhang CGCT CGCT CGCT	Cloning edited	g file cannot anymore.
B 1 2 3 4	Z Y Y S Ø A E Name pET-Ori-KanR-promoter-01 B0030-alsS-terminator-02- pET-Ori-KanR-promoter-01 B0030-alsS-terminator-03- pET-Ori-KanR-promoter-01 B0032-alsS-terminator-03- pET-Ori-KanR-promoter-01 B0032-alsS-terminator-01-	-T5-RBS-01- rmBT1 -T5-RBS-01- T0 -T5-RBS-01- T7 -T5-RBS-02- rmBT1	Backbone pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR	 Overhang GGAG GGAG GGAG GGAG GGAG 	Promoter promoter- 01-T5 promoter- 01-T5 promoter- 01-T5 promoter- 01-T5	 C T T T T T 	Overhang RI TACC B TACC B TACC B TACC B	BS RBS-01- 0030 RBS-01- 0030 RBS-01- 0030 RBS-02- 0032	 <	Dverhang CCAT CCAT CCAT CCAT	CDS alsS alsS alsS alsS alsS alsS	~	Overhang AACT AACT AACT AACT	Terminator oterminator- oterminator- oz-TO terminator- o3-TT terminator- o1-rmBT1	Overhang CGCT CGCT CGCT CGCT	Cloning edited	file cannot anymore.
B 1 2 3 4 5	Z 型 S Ø A ∨ E ∨ Name pET-Ori-KanR-promoter-01 B0030-alsS-terminator-01- pET-Ori-KanR-promoter-01 B0030-alsS-terminator-02- pET-Ori-KanR-promoter-01 B0032-alsS-terminator-03- pET-Ori-KanR-promoter-01 B0032-alsS-terminator-04- B0032-alsS-terminator-04- pET-Ori-KanR-promoter-01 B0032-alsS-terminator-04- pET-Ori-KanR-promoter-01 B0032-alsS-terminator-04-	-T5-RBS-01- T5-RBS-01- T0 -T5-RBS-01- T0 -T5-RBS-02- T0 -T5-RBS-02- T0	Backbone pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR	Overhang SGAG GGAG GGAG GGAG GGAG GGAG GGAG	promoter 01-T5 01-T5 01-T5 01-T5 01-T5 01-T5 01-T5 0 promoter- 01-T5	 C T 	Overhang RI TACC Br TACC Br TACC Br TACC Br TACC Br	BS RES-01- 0030 RES-01- 0030 RES-01- 0030 RES-02- 0032 RES-02- 0032		Dverhang DCAT DCAT DCAT DCAT DCAT	CDS alsS alsS alsS alsS alsS alsS alsS alsS	~ ~ ~	Overhang AACT AACT AACT AACT AACT	Terminator 0 terminator- 01-rrnBT1 • terminator- 02-T0 • terminator- 03-T7 • terminator- 01-rrnBT1 • terminator- 01-rrnBT1 • terminator- 01-rrnBT1 • terminator- 01-rrnBT1 • terminator- 02-T0	Overhang CGCT CGCT CGCT CGCT CGCT	cloning edited	g file cannot anymore.
B 1 2 3 4 5 6	Image: Image	-T5-RBS-01- T75-RBS-01- T0 -T5-RBS-01- T7 -T5-RBS-02- T5-RBS-02- T0 -T5-RBS-02- T7	Backbone pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR	 Overhang GGAG GGAG GGAG GGAG GGAG GGAG GGAG 	Promoter 01-15 01-15 01-15 01-01-15 01-15 01-15 01-15 01-15 01-15 01-15 01-15	 <	Overhang Ri TACC B TACC B TACC B TACC B TACC B TACC B	BS RES-01- 0030 RES-01- 0030 RES-01- 0030 RES-02- 0032 RES-02- 0032 RES-02- 0032		Dverhang CCAT CCAT CCAT CCAT CCAT CCAT	CDS alsS alsS alsS alsS alsS alsS alsS alsS alsS alsS	~	Overhang AACT AACT AACT AACT AACT AACT AACT	Terminator 0 terminator- 01-rmBT1 • terminator- 02-T0 • terminator- 03-T7 • terminator- 01-rmBT1 • terminator- 03-T7 • terminator- 01-rmBT1 • terminator- 02-T0 • terminator- 03-T7	Overhang CGCT CGCT CGCT CGCT CGCT CGCT	edited	g file cannot anymore.
B 1 2 3 4 5 6 7	Z Y Y A E Name PET-OrI-KanR-promoter-01 B0030-alsS-terminator-01- pET-OrI-KanR-promoter-01 B0030-alsS-terminator-02- PET-OrI-KanR-promoter-01 B0030-alsS-terminator-03- PET-OrI-KanR-promoter-01 B0032-alsS-terminator-03- PET-OrI-KanR-promoter-01 B0032-alsS-terminator-01- PET-OrI-KanR-promoter-01 B0032-alsS-terminator-02- PET-OrI-KanR-promoter-01 B0032-alsS-terminator-03- PET-OrI-KanR-promoter-01 B0032-alsS-terminator-03- BET-OI-KanR-promoter-01 B0034-alsS-terminator-03- PET-OI-KanR-promoter-01 B0034-alsS-terminator-03-	*** -T5-RBS-01- rmBT1 -T5-RBS-01- T0 -T5-RBS-02- rmBT1 -T5-RBS-02- T0 -T5-RBS-02- T7 -T5-RBS-03- rmBT1	Backbone pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR	Overhang GGAG	Promoter opromoter- o1-T5	 C T T<	Overhang Ri TACC Br TACC Br TACC Br TACC Br TACC Br TACC Br TACC Br	BS RBS-01- 0030 RBS-01- 0030 RBS-02- 0032 RBS-02- 0032 RBS-02- 0032 RBS-02- 0032 RBS-03- 0034	 1 	Dverhang CCAT CCAT CCAT CCAT CCAT CCAT CCAT	CDS alsS	~ ~ ~ ~	Overhang AACT AACT AACT AACT AACT AACT AACT	Terminator terminator- 01-rrnBT1 terminator- 02-T0 terminator- 03-T7 terminator- 01-rrnBT1 terminator- 02-T0 terminator- 03-T7 terminator- 01-rrnBT1 terminator- 02-T0 terminator- 03-T7 oterminator- 01-rrnBT1	Overhang CGCT CGCT CGCT CGCT CGCT CGCT	Cloning edited	file cannot anymore.
B 1 2 3 4 5 6 7 8	Z U S Ø A E Name pET-Ori-KanR-promoter-01 B0030-alsS-terminator-01- pET-Ori-KanR-promoter-01 B0030-alsS-terminator-02- pET-Ori-KanR-promoter-01 pET-Ori-KanR-promoter-01 B0032-alsS-terminator-03- pET-Ori-KanR-promoter-01 B0032-alsS-terminator-02- pET-Ori-KanR-promoter-01 B0032-alsS-terminator-02- pET-Ori-KanR-promoter-01 B0032-alsS-terminator-03- pET-Ori-KanR-promoter-01 B0034-alsS-terminator-01- B0034-alsS-terminator-01- B0034-alsS-terminator-01- B0034-alsS-terminator-01- B0034-alsS-terminator-01- DET-Ori-KanR-promoter-01		Backbone pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR pET-Ori- KanR	Overhang GGAG GGAG	Promoter opromoter- 01-T5	 c f f	Overhang RI TACC B TACC B TACC B TACC B TACC B TACC B TACC B TACC B	BS RBS-01- 0030 RBS-01- 0030 RBS-02- 0032 RBS-02- 0032 RBS-02- 0032 RBS-03- 0034 RBS-03- 0034	 A A	Dverhang DCAT CCAT CCAT CCAT CCAT CCAT CCAT CCAT	CDS alsS	~ ~ ~ ~	Overhang AACT AACT AACT AACT AACT AACT AACT AAC	Terminator 0 terminator- 01-rmBT1 0 terminator- 02-T0 0 terminator- 03-T7 0 terminator- 01-rmBT1 0 terminator- 02-T0 0 terminator- 03-T7 0 terminator- 03-T7 0 terminator- 01-rmBT1 0 terminator- 01-rmBT1 0 terminator- 01-rmBT1	Overhang CGCT CGCT CGCT CGCT CGCT CGCT CGCT	Cloning edited	g file cannot anymore.

6. Combinatorial Cloning

Golden Gate: Save the constructs and related files

6

Assemble DNA	×	Assemble DNA		×	Assemble DNA		×
1 Save constructs 2 Add constructs to a folder and optionally set a	Save fragments 3 Save primers	Save constructs	Save fragments	3 Save primers	Save constructs	2 Save fragments	3 Save primers
Set location*	Set schema	i Saving fragments	is optional.		 Saving primers is optimised 	tional.	
Mía	Plasmid V	Create DNA Sequent	ces to represent amplified fragments (Create DNA Oligos to re	present newly designed primers (
	Cancel Next			Back Next	•		Back Assemble

A

You can choose whether to create files for every primer and related amplicon.

If you choose not to create the primer files, you will still be able to find them later.

Q

Construct Assembly

Golden Gate: Results

- ✓ After you finalize the assembly, you can move over to the "Constructs" tab to see the resulting constructs.
- \checkmark You can view the primer information summarized in a table.

Primer view

X R 0 5.2 kb

RI RI 5.2 kb X R

5.2 kb R R O

5.2 kb X RI O

5 0 bh

View constructs							
pET-Ori-KanR-promoter-01-T5- X RBS-01-B0030-alsS-terminator- 01-rmBT1	SEQUEN	PRIMERS					
5.2 kb	- P	rimers					^
pET-Ori-KanR-promoter-01-T5- X RBS-01-B0030-alsS-terminator- 02-T0		Fragment	Orientation	Action	Primer	Bases	T _m whole (°C)
5.2 kb	1	promoter-01-T5	5' primer	Design new primer	promoter-01- T5_forward	TTTCATGG 44 bp	62.22
pET-Ori-KanR-promoter-01-T5- RBS-01-B0030-alsS-terminator- 03-T7	2	promoter-01-T5	3' primer	Design new primer	promoter-01- T5_reverse	TTTCATGG 40 bp	62.08
2 kb pET-Ort-KanR-promoter-01-T5-	з	RBS-01-B0030	5' primer	Design new primer	m RBS-01- B0030_forward	TTTCATGG 45 bp	59.16
RBS-02-B0032-alsS-terminator- 01-rmBT1	4	RBS-01-B0030	3' primer	Design new primer	B0030_reverse	TTTCATGG 44 bp	59.93
2 kb	5	alsS	5' primer	Design new primer	alsS_forward	TTTCATGG 34 bp	65.81
RBS-02-B0032-alsS-terminator-	6	alsS	3" primer	Design new primer	alsS_reverse	TTTCATGG 34 bp	63.86
02-T0 5.2 kb	7	terminator-01-rmBT1	5' primer	Design new primer	meterminator-01- rmBT1_forward	TTTCATGG 33 bp	69.64
pET-Ort-KanR-promoter-01-T5- RBS-02-B0032-alsS-terminator- 03-T7	8	terminator-01-rrnBT1	3' primer	Design new primer	m terminator-01- rmBT1_reverse	TTTCATGG 40 bp	68.77

You can copy this table or download it as a CSV file.

Golden Gate: Results

✓ You will also be able to find a file with the resulting construct. By going to the "Assembly History" tab, you will see the fragments that were used to create it, and you can also find a link to the Combinatorial Cloning file.

DTU

7. CRISPR tools

You will need the files in the *CRISPR tools* subfolder.

••• / Your Name / Training Files /		— pta source X		
3. CRISPR tools 🏚 🗸	· (+	SEQUENCE MAP DESCRIPTION	METADATA DNA FRAGMENT BATCH LINEAR MAP *** C Share	
Q Search	Z	→ + Create ~ Analyze ~ I ✿ ~ Q	- ○	
Type ✓ ₹ Filters		tttcacaccgccagctcagctggcggtgctgttttgtaacccgccaaatcggcgg aaagtgtggcggtcgagtcga	pta source (3929 bp)	8
PCRISPR Last modified 6 days ago	M		2,303,000 2,304,000 2,305,000 pta gene yfcC gene	₽
 pta source Last modified 6 days ago 	۵	taacgaaagaggataaaccgtgtcccgtattattatgctgatccctaccggaacc	pta CDS (phoransferase) yfcC CDSrotein)	©
		attgctttctcctatttggcacagggcataataatacgactagggatggccttgg		≞
		pta gene »>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		÷
		2,301,2998001,2995602,2098602,2095602,2018602,2015602,2025602,2025602,630 Pshai		0
		agcgtcggtctgaccagcgtcagccttggcgtgatccgtgcaatggaacgcaaag tcgcagccagactggtcgcagtcggaaccgcactaggcacgttaccttgcgtttc		
		pta gene >> >> pta CDS (phosphate acetyltransferase) >>		P
		BASES 3929	ASSEMBLY SPLIT WORKS	PACE

8

Tool overview

(1) It is possible to create guide RNA sequences and Homologous recombination templates using the CRISPR tool. There are 2 ways to access it:

Tool overview

7. CRISPR tools

DTU

7. CRISPR tools 7.1 gRNA design

DTU

Q

CRISPR tools

gRNA design

7.1 gRNA design

gRNA design

3 Change the genome to *E. coli* BL21(DE3).

Design CRISPR g	uides: Guide parameters	\times	
Design type	 Single guide Wild-type Cas9, single gRNA (higher efficiency) 		
	 Paired guides Double Cas9 nickase, two gRNAs (lower off-target effects) 		
	 Guides for "base editing" (Komor et al., 2016) C -> T (or G -> A) substitution, no dsDNA breaks 		
Guide length	20		
Genome	ASM956v1 (Escherichia coli BL21(DE3))		 Setting the genome is important for off-target
PAM	NGG (SpCas9, 3' side)		calculations.
	Show advanced	d settings	
Save these as my d	efault CRISPR settings	Finish	-

gRNA design

Give a name to your CRISPR design tab and save it so you can come back to it if you need to.

Select the **pta CDS** annotation. The target region will be set automatically.

SEQUENCE MAP DESCRIPTION	METADATA DNA FRAGMENT BA	TCH DESIGN CRISE	PR × ••• C ² Sh
+ Create → Analyze → : ◆ → Q	pta gRNA	Save	Settings
tttcacaccgccagctcagctggcggtgctgttttgtaacccgccaaatcggcgg aaagtgtggcggtcgagtcga	To get started, create a target r map and pressing + .	egion by selecting it c	on the sequence
2,301,93501,94801,94501,95801,95501,96801,96501,97801,975	Target 2302000	2304144	-
taacgaaagaggataaaccgtgtcccgtattattatgctgatccctaccggaacc attgctttctcctatttggcacagggcataataatacgactagggatggccttgg pta gene »>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	region	7 Click th genera	ne + button to ite gRNA candidates.
2,301,99501,99502,00502,01502,01502,02502,030 PshAI			
agcgtcggtctgaccagcgtcagccttggcgtgatccgtgcaatggaacgcaaag tcgcagccagactggtcgcagtcggaaccgcactaggcacgttaccttgcgtttc			
pta gene >> >>> pta CDS (phosphate acetyltransferase) >>			

7.1 gRNA design

gRNA design

8 Set the genome region as shown to obtain accurate **off-target** scores for the gRNA candidates.

SEQUENCE MAP DESCRIPTION	METADATA DNA FRAGMENT BATCH DESIGN CRISPR × ••• C SI	
Create ∨ Analyze ∨ : Φ ∨ Q	pta gRNA Save Settings	
tttcacaccgccagctcagctggcggtgctgttttgtaacccgccaaatcggcgg aaagtgtggcggtcgagtcga	Target 2302000 2304144 +	
2,301,93501,94801,94501,95801,95501,96801,96501,97801,975	region Genome region	×
•	Start End Annotations Genome Region Setting a genome region will remove it from off-t	arget analysis.
57 49	▼ 2302000 2304144 pta CDS No region set O None	
taacgaaagaggataaaccgtgtcccgtattattatgctgatccctaccggaacc	(phosphate acetyltransferase), OChromosome	✓ 2302000 2304144
56 50 56 50 35 49 51 49	pta gene Find genome matches	
pta CDS (phosphyltransferase) >>>	You don't have a genome region set above, so scores may not match scores from other sites. Benchling uses the genome region to locate your target region and to ignore potential off-target sites in that part of the genome.	Set genome region Cancel
2,301,99801,99502,00802,00502,01802,01502,02802,02502,030		
PshAI 62 50 52 50 56 49 59 50	The Doench, Fusi et al. (2016) paper publishes two models for scoring guides - one that includes the position of the cut within the translated gene and a simpler model that looks only at the guide	

gRNA design

Benchling will show you a list of potential gRNAs to choose from. You can sort them by **on-target** or **off-target** score, or browse your sequence and select the best one for your needs based on its location.

crob The Novo Nordisk Foundation Center for Biosustainability

gRNA design

Select the **Choose a plasmid from your Benchling folders** option and drag the **pCRISPR** file into the box.

gRNA design

Click Next.

gRNA design

	+	Create 🗸	Analyze ~	Сору	:	\$ ~	Q			
2,	,502,110	2,502,120	2,502,150 2	.,,	, 502,	100				
			Ę	agI				Finalize Assemblies		
	_							Assembly Name	Guide Sequence 🕐	
								pCRISPR-pta	tgcgaactcttccaccacga	\times
agactacgacta	atcgtgcgt	.gcgaactctto	ccaccacgacg	gccgctg	aac	cgctg	ga			
tctgatgctga	tagcacgca	cgcttgagaa	ggtggtgctgo	cggcgac	ttg	gcgac	ct	+ Add		
52 54	56 58		5 7 7 7 7	66 6	58 E	70 P		Folder		
pta			5 / 1 / 1 / 1					roluer		
								3. CRISPR tools		
							_			
							-	Previous		Assembl
<u>}</u> »		pta gen	e			,	»ź			
\$»	pta CDS (p	hosphate acet	tyltransferas	2)			<u>>></u>			
2,302,160	2,302,170	2,302,180	2.302.190	2.302.3	200		Т			
, ,		, ,	, ,	, ,						
aaatgagctac	gttgaaggt	.ctgctttccag	gcaatcagaaa	ngatgtgc	tga	tggaa	ag			
tttactcgatg	caacttcca	gacgaaaggt	cgttagtcttt	ctacacg	act	acctt	C			
72 74	76	/8 80	82 84	86	8	SS M				
pta										
pta										
pta							_			

7.1 gRNA design

CRISPR tools

gRNA design

- ✓ The result will be an expression vector with your chosen gRNA and a primer pair that can be annealed and ligated into the plasmid after digestion with BsaI.
- \checkmark This can also be done with multiple gRNAs at a time.

	PEASMID EINEARIMAP DESCRIPTION METADATA
← ← ← Create ∨ Analyze ∨ Copy : ◆ ∨ Q	- ○ → Create PDF ♥ ✓ Q
tgttttgaatggtcccaaaacGtgcgaactcttccaccacgattttagagctatgctgttttgaa acaaaacttaccagggttttgCacgcttgagaaggtggtgctaaaatctcgatacgacaaaactt	crRNA leader <u>Guide, DR, DR</u> PLtetO-1 promoter, +1 +1 <u>pBRforEco</u>
DR Guide DR > 1 1 1 1 1 1 10 20 30 40 50 60	it st
EcoRI ggtcccaaaacttcagcacactgagacttgttgagttga	pCRISPR-pta
EcoRI tggtcccaaaacttcagcacactgagacttgttgagttgaattcggtcagtgcgtcctgctgatg accagggttttgaagtcgtgtgactctgaacaactcaacttaagccagtcacgcaggacgactac	pCRISPR-pta
EcoRI tggtcccaaaacttcagcacactgagacttgttgagttgaattcggtcagtgcgtcctgctgatg accagggttttgaagtcgtgtgactctgaacaactcaacttaagccagtcacgcaggacgactac DR PLtet0omoter « 70 80 90 100 110 120 130	pCRISPR-pta

DTU

7. CRISPR tools 7.2 HR template design

HR template design

Open the **pta source** file. 2 Access the **HR template design** menu.

⊠ pCRISPR	— pta source	×	
SEQUENCE MAP DESCRIPTION		METADATA DNA FRAGMENT BATCH LINEAR MAP C Share	Calact the option to grapte a conv
	✓ Analyze ∨ : ♀ < Q	- ○ → + Create PDF ◆ ~ Q	the sequence.
tttcacaccgccagctcagctggcggtgctg aaagtgtggcggtcgagtcga	ttttgtaacccgccaaatcggcgg aaaacattgggcggtttagccgcc	pta source (3929 bp) 2,303,000 2,304,000 2,305,000 ⊗	Design HR template
2,301,23301,24801,24301,25801,	25501,26801,26501,27801,975	pta gene yfcC gene pta CDS (phoransferase) yfcC CDSrotein)	Genome ASM956v1 (Escherichia coli BL21(DE3)) •
taacgaaagaggataaaccgtgtcccgtatt attgctttctcctatttggcacagggcataa	attatgctgatccctaccggaacc	Ø	PAM NGG (SpCas9, 3' side) v
	pta gene »۶	≡	 Create a copy of this sequence Modify this sequence
pta CDS (ph	osphyltransferase) »>>	CRISPR	
2,301, 2 9 3 01, 2 9 5 02 <mark>,20802,20502,</mark>	218 02, 213 02, 228 02, 223 02,030	Design and analyze guides	Cancel
PshAI		Saved guide analyses	
agcgtcggtctgaccagcgtcagccttggcg tcgcagccagactggtcgcagtcggaaccgc	tgatccgtgcaatggaacgcaaag actaggcacgttaccttgcgtttc	No guide analyses	
		Design HR template (ssODN)	
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ltransferase) »>		

HR template design

Delete 30 nt as shown.

(1) You can introduce the desired modifications to the sequence, but do not remove the gRNA region nor its PAM. Benchling will look for **both** of them. The **PAM removal** will be done by the tool at a later stage.

Insert a stop codon in-frame of the pta CDS.

SEQUENCE MAP DESCRIPTION METADATA DNA FRAGMENT BATCH DESIGN HR TEMPLATE 2 Share SEQUENCE MAP DESCRIPTION METADATA DNA FRAGMENT BATCH DESIGN HR TEMPLATE 🖸 Share 🏾 🗗 Copy : 🗢 🗸 Settings - ____ Create 🗸 🛛 Analyze 🗸 Copy : ¢∨ Q Settings pta gene pta gene pta CDS (phosphate acetyltransferase) Step 1: Introduce desired edits pta CDS (phosphate acetyltransferase) Step 1: Introduce desired edits 8< 8 2,302,130 2,302,140 2,302,150 2,302,160 2,302,170 2,302,180 2,302,130 2,302,140 2,302,150 2,302,160 2,302,170 2,302,180 Select and type in the sequence map to introduce the changes (e.g. point \equiv Select and type in the sequence map to introduce the changes (e.g. point \equiv mutations, insertions, deletions) you want to make to the genome. mutations, insertions, deletions) you want to make to the genome Eag Silent mutations to remove the target site will be added in a later step. Silent mutations to remove the target site will be added in a later step. © G Eag accacgacggccgctgaaaccgctgaaaatgagctacgttgaaggtctgctttccagcaatcagaa accacgacggccggtctgctttccagcaatcagaaagatgtgctgatggaagagatcgtcgcaaa tggtgctgccggcgacttggcgacttttactcgatgcaacttccagacgaaaggtcgttagtctt Knock-in edits Knock-in edits 78 80 82 tggtgctgccggccagacgaaaggtcgttagtctttctacacgactaccttctctagcagcgttt 64 66 68 70 72 74 76 84 ≞ <u></u> EPLKMSYVEGL/LSSNQK 64 66 68 70 72 74 76 78 80 82 84 Deleted ctgaaccgctgaaaatgagctacgttgaag at 2302199 No edits introduced yet AGLLSS<mark>SNQKD</mark>VL<mark>ME</mark>EIVA Next 8 8 pta gene pta CDS (phosphate acetyltransferase) pta gene pta CDS (phosphate acetyltransferase) 2,302,240 2,302,240 taa ENTER to delete 30 bases at position 2302198. agatgtgctg cgctgaagtcgttc BsaAI tctacacgac gcgacttcagcaag Press ESC to cancel 102 104 ctaccacgct ENTER to insert 3 bases at position 2302198 cccgacacgtaagc V A N Y H A N gatggtgcga gggctgtgcattcg 86 ESC to cancel. 102 104 P T R K YHA BASES 3929 START 2302198 END 2302227 LENGTH 30 GC 46.67% MELTING TEMP 63.3 °C ASSEMBLY _ SPLIT WORKSPACE BASES 3899 INSERT 2302198 ASSEMBLY _ SPLIT WORKSPACE

Click Next.

7.2 HR template design

HR template design

(1) Benchling will select the region needed to create the HR template. You can adjust the length of the selection.

	Setting
cagccttggcgtgatccgtgcaatggaacgcaaaggcgttcgtctgagcgttttcaaacctatcg gtcggaaccgcactaggcacgttaccttgcgtttccgcaagcagactcgcaaaagtttggatagc	Step 2: Adjust HR arms
20 22 24 26 28 30 32 34 36 38 40 S L G V I R A M E R K G V R L S V F K P I pta	Adjust the region to use as the HR template by clicking and dragging the ends of the selection on the sequence map. A 200 bp region ground your mutations has glready been selected. At least 50 bp
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	on each side flanking the mutations is recommended.
2,302,070 2,302,080 2,302,090 2,302,100 2,302,110	Template region
	2302098 - 2302297 Reset to default
ctcagccgcgtaccggtggcgatgcgcccgatcagactacgactatcgtgcgtg	2302098 - 2302297 Reset to default Template Length: 200 bp
ctcagccgcgtaccggtggcgatgcgcccgatcagactacgactatcgtgcgtg	2302098 - 2302297 Reset to default Template Length: 200 bp Left arm length: 100 bp Right arm length: 99 bp
ctcagccgcgtaccggtggcgatgcgcccgatcagactacgactatcgtgcgtg	2302098 - 2302297 Reset to default Template Length: 200 bp Left arm length: 100 bp Right arm length: 99 bp Knock-in edits Knock-in edits Knock-in edits
ctcagccgcgtaccggtggcgatgcgcccgatcagactacgactatcgtgcgtg	2302098 - 2302297 Reset to default Template Length: 200 bp Left arm length: 100 bp Right arm length: 99 bp Knock-in edits Deleted gctgaaccgctgaaaatgagctacgt at 2302198
ctcagccgcgtaccggtggcgatgcgcccgatcagactacgactatcgtgcgtg	2302098 - 2302297 Reset to default Template Length: 200 bp Left arm length: 100 bp Right arm length: 99 bp Knock-in edits Deleted gctgaaccgctgaaaatgagctacgt at 2302198 Deleted g at 2302199 Deleted g at 2302199

accacgacggcctaaggtctgctttccagcaatcagaaagatgtgctgatggaagagatcgtcgc

Click Next.
CRISPR tools

HR template design

E 1 , 1			
- 1			

8 Paste the gRNA sequence: tgcgaactcttccaccacga

- $ -$										Sett
HpaII MspI BsrFI	Step 3: Remo	ve target	t site							
BsaWI BslI SfaNI R:aI CviQI BstUI BstUI Fnu4HI BcgI AciI AgeI HhaI BloI HaP1I Btg7I CacRI	Confirm the mu synonymous co Our default sugg mutations. In the keep the <u>CAI</u> clo	tated bases dons below. gestion is to at case, we t ose to the or	and click mutate th try to intro iginal valu	Next to co le PAM, ui duce 2 m ie.	ontinue. N nless it oc utations i	Nodify the ccurs in a n the guia	mutation translatio	s by clicki n with no ace, select	ing on the possible ting codo	silen ns to
gagogttttcaaacctatcgctcagccgcgtaccggtgcgatgcgcccgatcagactacgactatcgtgcgtg	tgcgaactcttccac	cacga]					
ctcgcaaaagtttggatagcgagtcggcgcatggccaccgctacgccgggctagtctgatgctgatagcacgcac		R	A	N	S	S	Т	т	т	
tcgcaaaagtttggatagcgagtcggcgcatggccaccgctacgcgggctagtctgatgctgatagcacgcac	Wildtype	R	A gcg	N aac	S tct	S tcc	T acc	T acg	T acg	9
cgcaaaagtttggatagcgagtcggcgcatggccaccgctacgcgggctagtctgatgctgatagcacgcac	Wildtype Mutations 🖱	R cgt AGA	A gcg GCA	N aac AAC	S tct AGC	S tcc AGC	T acc ACA	T acg ACA	T acg ACA	G
cgcaaaagtttggatagcgagtcggccatggccaccgctacgcgggctagtctgatgtctgatagcacgcac	Wildtype Mutations 🕽	R Cgt AGA AGG	A gcg GCA GCC	N aac AAC AAT	S tct AGC AGT	S tcc AGC AGT	T acc ACA ACC	T acg ACA ACC	T acg ACA ACC	(
cgcaaaagtttggatagcgagtcggcgcatggccacgctagtcggggctagtctgatgtcgatagcacgcac	Wildtype Mutations 🕽	R Cot AGA AGG CGA	A gcg GCA GCC GCG	N aac AAC AAT	S tct AGC AGT TCA	S tcc AGC AGT TCA	T acc ACA ACC ACG	T acg ACA ACC ACC	T acg ACA ACC ACG	
cgcaaaagtttggatagcgagtcggcgcatggccaccgctacgcgggctagtctgatgtcgatagcacgcac	Wildtype Mutations 🖒	R Cot AGA AGG CGA CGC	A gcg GCA GCC GCG GCT	N aac AAC AAT	S tct AGC AGT TCA TCC	S tcc AGC AGT TCA TCC	T acc ACA ACC ACC	T acg ACA ACC ACC ACG	T acg ACA ACC ACG	
ccgcaaaagtttggatagcgggtggcgcatggccacgctagtctgatgtgtgatagcacgcac	Wildtype Mutations 🖒	R Cot AGA AGG CGA CGC CGG	A gcg GCA GCC GCG GCT	N AAC AAT	S tct AGC AGT TCA TCC TCC	S tcc AGC AGT TCA TCC TCC	T acc ACA ACC ACG ACT	T acg ACA ACC ACG ACT	T acg ACA ACC ACG ACT	
ccgcaaaagtttggatagcgagtcggcgcatggccacgctagtctgatgtcgatgcagcacgcac	Wildtype Mutations 🕽	R AGA AGG CGA CGC CGG CGT	A gcg GCA GCC GCG GCT	N AAC AAT	S tct AGC AGT TCA TCC TCG TCT	S tcc AGC AGT TCA TCC TCG TCT	T acc ACA ACC ACG ACT	T acg ACA ACC ACC ACG	T acg ACA ACC ACC ACG	()
ctcgcaaaagtttggatagcgagtcggcgatggccacgctagctgatgtctgatgtctgatgcacgcac	Wildtype Mutations S	R Cot AGA AGG CGA CGC CGG CGT	A gcg GCA GCC GCG GCT	N aac AAC AAT	S tct AGC AGT TCA TCC TCG TCT	S tcc AGC AGT TCA TCC TCG TCT	T acc ACA ACC ACG ACT	T acg ACA ACC ACC ACT	T acg ACA ACC ACG ACT	

 The PAM will be removed from the HR template to prevent the degradation of the ssODN. You can choose from several alternatives, as shown in the table.

Click Next.

7.2 HR template design

CRISPR tools

 Step 4: Summary

 Knock-in edits

 Deleted gctgaaccgctgaaaatgagctacgt at 2302026

 Deleted g at 2302027

 Template Range
 2302098 to 2302297

 Guide
 tgcgaactcttccaccacga

 Original Target Site
 ... cgt gcg aac tct tcc acc acg acg gcc ...

 After Site Removal
 ... cgt gcg aac tct tcc acc acg ACC gcc ...

Copy the template or its reverse complement to your clipboard.

To design a template for the same knock-in edits but with a different guide, click here.

 After the design process, you can copy the resulting HR template and paste it onto a new DNA sequence file to save it.

DTU

8. Sequence alignments

This is the fourth part of the *hands-on* example. Creation of Gene knockout Cloning vector Sequence expression vector using alignment design CRISPR/Cas9 library Template (T) ✓ Multisequence alignment

Bonus: How to do consensus alignments

Expected output:

Q

- Alignments using pSEVA6311-phaC-pct540 as template
 - Sanger sequencing alignments
 - Plasmid sequencing alignment

You will need the files in the **Sequence alignments** subfolder.

DTU

 \odot

DTU

8. Sequence alignments 8.1 Alignment tool

114

Alignment tool overview

- In a real-life scenario, the construct sequences could be sent to sequencing. The results could then be analyzed using the **alignment tool** in Benchling.
 - ✓ There are **three alignment options** and several alignment programs available:

e e e e e e e e e e e e e e e e e e e		× 👩 Pairwise alignment	t:
2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 <th></th> <th>Sequences are compagainst a template sequence, creating</th> <th>ared</th>		Sequences are compagainst a template sequence, creating	ared
Pairwise	Multisequence	Consensus individual alignment	files
		for each non-templat	e sec
	Inct the template for each nep template codulence		
Pairwise Alignment - Make one alignment ag		T	
Template (T)		T	
Template (T)			
Pairwise Alignment - Make one alignment ag Template (T)			
Pairwise Alignment - Make one alignment ag Template (T)	late sequence(s)		
Pairwise Alignment - Make one alignment ag Template (T) Template (s) Template(s) Template (s) Template (s)	late sequence(s)		

Alignment tool overview

- In a real-live scenario, the construct sequence could be sent to sequencing. The results could then be analysed using the **alignment tool** in Benchling.
 - ✓ There are **three alignment options** and several alignment programs available:

Create DNA / RNA alignment		× 📀 Multisequence alignme
2 Choose input Define parameters		Multiple sequences are compared against a templ sequence, creating a unique
Pairwise	Multisequence	Consensus alignment file for all the n template sequences
Multisequence Alignment - The results will be attac	ned as a single alignment on the template sequen	xe. Hide details▲
	\rightarrow	
If you'd like to perform a contig alignment (shown below) Template (T)	we recommend selecting the MAFFT "local pairwise" a	Igorithm.
	-	
Femplate(s) + Non-template s	equence(s)	
Choose an alignment program.		

Alignment tool overview

- In a real-live scenario, the construct sequence could be sent to sequencing. The results could then be analysed using the **alignment tool** in Benchling.
 - ✓ There are **three alignment options** and several alignment programs available:

	Pairwise	Multisequence	Consensus
Consensus Align	ment - A new sequence	will be created with the consensus of all the selected	d sequences. Hide details
		\rightarrow $$	Consensus
		the same to a local and the same share the same share the same share the same same same same same same same sam	electie e" electrithere
If you'd like to perf	orm a contig alignment (sl	nown below), we recommend selecting the MAFFT "local p	airwise algorithm.
If you'd like to perf	orm a contig alignment (sl	nown below), we recommend selecting the MAFF1 "local p	Consensus
If you'd like to perf	orm a contig alignment (sł		Consensus
If you'd like to perf	orm a contig alignment (si		Consensus

Consensus alignment:

Multiple sequences are compared against each other, creating a new sequence from the consensus region of all the sequences.

Select destination folder.

- It's possible to choose between multiple types of MAFFT algorithms and Crustal Omega multisequence algorithm to power the alignment.
- ✓ Some of the key parameters of these can be changed as needed.

DTU

8. Sequence alignments8.2 Multisequence alignment

Multisequence alignment

Open the Sequence alignments	folder
------------------------------	--------

Select all the files in the folder. From the Analyze menu, select Create DNA/RNA Alignment.

•••• / Your Name / Training Files /												
4. Sequence alignments 🏟 🛛 s	Saved Searches	~										
Q Search	Z	Type 🗸 📮	Filters									
> 1-4 of 4 items						4 rows selected	C ~	÷	٦		≝⊪∾	More V
Name	1	Inventory	ID	\downarrow	Modified \downarrow	Authors		Descr	Я	Open		
Z FW-seq-1					11/02	Create DNA / RNA Align	ment		<u>lad</u>	Analyze		
MID-seq-1					11/02/2025	Auto-Annotate			Q	Refresh		
plasmid-seq		No inventory availa	a		11/02/2025	Attach Primers					No va	ue
pSEVA6311-phaC-pct540		No inventory availa	a		11/02/2025	Auto-fill part fields					No va	ue
						Auto-fill translations						
1 This way of star	ting					Auto-fill transcriptions						
you have multip	be neipi ble seque	ences				Set topology						
to work with.	·					Codon optimize						
						Remove annotations						
						- D						

Alignment creation

Multisequence alignment

Create DNA / RNA aligni	ment	×	
1 2 Choose input Define par	rameters		
Upload sequence and trace file	es (.ab1, .ftv, .fasta, .gb, and .geneious). RNA uploads are not currently supported.		
	Drag and drop to upload or Choose files		
Search for a DNA / RNA seque	nce.		
Search by name			
Create a DNA / RNA sequence Nucleotide type* DNA	rom scratch.		
Create a DNA / RNA sequence Nucleotide type* DNA Name	e from scratch. RNA Bases	Add	
Create a DNA / RNA sequence Nucleotide type* DNA Name Sequences FW-seq-1 × X MID-s	eq-1 × Z plasmid-seq × Z pSEVA6311-phaC-pct540 ×	Add	

Multisequence alignment

Configure the alignments to create two separate ones, as shown, both using **pSEVA6311-phaC-pct540** as template.

Create DNA / RNA alignment			×	
Choose input Define parameters				
Pairwise	Multisequence	Consensus		
Multisequence Alignment - The results will	be attached as a single alignment on the template se	equence. Show details 💌		
Template(s) + Non-te	mplate sequence(s)			
▼ pSEVA6311-phaC-pct540	FW-seq-1 × Search		×	
▼ pSEVA6311-phaC-pct540	olasmid-seq × Search		×	
Choose an alignment program.				
MAFFT recommended for nucleotide alignments Faster, less precise, can reverse sequence	Clustal Omega recommended for amino acid alignments Slower, more precise, cannot reverse seque	nces		
Auto (MAFFT)	∽ Show p	arameters		
Alignments performed via MAFFT v7 (Katoh, Standley	2013).			
		Back Create A	lignment	5 Create th alignmer

Multisequence alignment

Go to the file you used as template and open the **Alignments** menu. You will find both alignments here.

8.2 Multisequence alignment

Multisequence alignment

- ✓ You can now see and browse your resulting alignments.
- ✓ You may notice the first one includes trace files, which can help you assess the quality of the sequencing and assess whether the result can be considered accurate.
- The second one is a sequencing file for the whole plasmid. You can assess mismatches and toggle certain view options to check, for example, for amino acid changes in your CDS.

DTU

8. Sequence alignments8.3 Consensus alignment

0

Consensus alignment navigation

8.3 Consensus alignment

Consensus alignment navigation

7.2 Consensus alignment

DTU

9. Tips and tricks

Overview:

- > You can work in bulk using the expanded view of the workspace
- Re-indexing of sequences when creating alignments.
- Benchling <u>trouble-shooting articles</u> and <u>Help center</u> offers many resources, frequently asked questions and articles that can help you
 - Biosustain learning material: Brilliant Basics: The Molecular Biology Suite LIMS Help Guides

Q

Work in bulk using the expanded view

You can use the **expanded view** of the workspace to:

- ✓ Edit, move, archive... entities in bulk
- ✓ Create Multi-sequence alignments, attach and detach primers, autofill annotations and transcriptions, auto annotate...

Pro TIP: if you access the expanded view from the search, \bigcirc you will have access to all your entities, not only the ones contained in a particular project folder. Also, more filters will be available

/	Q Search	Z
	Type ▼ 〒 Filters	
	MolBio_training_DNA Consensus	P
	Alignment file 1_circular Last modified 7 hours ago	P
	Alignment file 2_circular Last modified 16 hours ago	P
	Alignment file1	Р
	Alignment file 2 Last modified 16 hours ago	Р
	DBR322_linear Last modified 18 hours ago	Р
	 P (Cat) promoter Last modified 18 hours ago 	P

Add to

Tips and tricks

Work in bulk using the expanded view

You can use the **expanded view** of the workspace to:

✓ F	Register,	edit,	move,	archive	entities	in bulk
-----	-----------	-------	-------	---------	----------	---------

					0.0000		Мо	ve to	Сор	y to 🚽 🦨	rchive	request	worklist	Expor
	Projects / RDM_Support Saved Searches					Register		Ţ						
	Q Search < > 1-24 of 24 items ≅	X	Туре 🔻	₹ Filters	┏ •	→ →	$\stackrel{\circ}{\overset{\circ}{\underset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\circ$	٦	. 1	8		≝ ₿. •	More	•
	Name		1	Inve	ntory	ID	\downarrow	Мо	dified \downarrow	Entry Date	5	Authors	Revie	w Stat
	MolBio_training_DNA Consensus							31/1	0/2023			Patricia Brito D	iaz	
	 Alignment file 1_circular 							01/1	1/2023			Patricia Brito D	iaz	
	✓ Alignment file 2_circular							31/1	0/2023			Patricia Brito D	iaz	
	✓ Alignment file1							31/1	0/2023			Patricia Brito D	iaz	

				🗍 Open	ar	
			Create DNA / RNA Alignment	🔟 Analyze >		
			Create AA Alignment	Bulk edit		
			Auto-Annotate	∂ Refresh		
			Attach Primers			
			Auto-fill part fields	-		
A	Projects /		Auto-fill translations	-		
	RDM_Support 🐲 Saved Searches 👻		Auto-fill transcriptions			
8	Q Search	Filters	Set topology	-		More •
Q	\ / 1-24 01 24 Items 52		Codon optimize			
+	💷 😑 Name 🥠	Invento	B			Review St
	MolBio_training_DNA Consensus		Remove annotations	-		Diaz
	✓ Alignment file 1_circular		Detach primers	-		Diaz
Ð	Alignment file 2_circular		Unlink parts	-		Diaz
	✓ Alignment file1		Remove translations		F	Diaz
			Back translate			

DTU

9. Tips and tricks

DTU

H

Autoindexing when creating alignments

When creating an alignment of circular sequences, Benchling by default performs an **auto indexing** of these sequences.

To change this, after creating the alignment, you will have to realign the file and unmark the "automatically reindex" box.

DTU

Autoindexing when creating alignments

		3 Realign DNA / RNA		
Choose Input Define parameters Upload sequence and trace files (.ab1, .ftv, .fasta, .gb, and .	geneious). RNA uploads are not currently supported.	Choose Input Define param	ieters	
		Pairwise	Multisequence	Consensus
🙆 Drag a	nd drop to upload or Choose files	Your realignment must be the same t	type as your original alignment.	
Search for a DNA / RNA sequence.		Multisequence Alignment - The	results will be attached as a single alignment on the template	sequence. Show details+
Search by name		Template(s)	Non-template sequence(s)	
Create a DNA / RNA sequence from scratch.		X Alignment file 2_circular	EF71215631_EF71215631 × Search	
Nucleotide type*				
		Choose an alignment program.		
Name Bases	Add	The fields below are set to the you last performed this particular	ne values you chose for your most recent alignment. These value ar alignment.	s may not reflect the selections yo
✓ Current sequences		Auto (MAFFT) at	you check this box, Benchling will utomatically reset the origin of the Show	parameters
Sequence	Use Latest Version	Alignments performed via MAFFT v	template sequence to better accommodate the corresponding	
X Alignment file 2_circular		Automatically reindex alignmen	non-template sequences.	
Z EF71215631_EF71215631 ×				Bac
✓ New sequences				Eddr
•				

Autoindexing when creating alignments

When creating an alignment of circular sequences, Benchling by default performs an **auto indexing** of these sequences.

To change this, after creating the alignment, you will have to realign the file and unmark the "automatically reindex" box.

Pro TIP:

- ✓ You can always re-index a circular plasmid by right-clicking on any part of the sequence. For linear sequences, the index can be changed using the "information" tab on the right panel.
- ✓ Make sure to have your sequences correctly indexed before performing an alignment to avoid further complications.

DTU

10. Resources

Questions?

Contact lims_support@biosustain.dtu.dk

DTU

Q

More resources

Benchling Learning Labs

Benchling provides a **learning platform** that offers role-specific courses that can be taken in a **flexible**pace structure.

https://www.benchling.com/learning-labs

Welcome to Benchling Learning Labs!

The destination to achieve your Benchling learning goals

	Course Catalog	Get C	ertified	Email Us		
[<u>L</u>		ক্ট্য			
Pra	ctitioner		Administrator			
Essential skills for all Benchling R&D Cloud users, covering core applications and best practices.			Additional training for Benchling Administrators, covering roles, permissions, configurations, and more.			
[
Dev	veloper		Consultant			
Specialized training covering Developer Platform fundamentals such as APIs, Events, and more.			Additional train covering the Be Methodology.	ing for consulting partners enchling Implementation		

0

More resources

Benchling Help Center

Benchling provides some short guides on main functionalities

https://help.benchling.com/hc/en-us

Benchling Help Center		
ŀ	low can we help?	
Q		Q
Ρο	pular: archive, schemas, permissions	