

Basics of Downstream Proteomics Analysis

14th May 2025 Alberto Santos

Multi-omics Network Analytics (MoNA)

Multimodal Data

Implementing tools to process, integrate, and analyse multimodal data. Diving into the benefits of harmonising multimodal data that converge to provide a comprehensive view of complex biological systems. Specifically we are interested in high-throughput multi-omics data generated using Mass spectrometry technology (proteomics and metabolomics) and metaomics data (metagenomics and metaproteomics).

Knowledge Graphs

Building High-quality Knowledge Graphs. Using and developing Knowledge Graph technologies and methods to structured data and to connect them to existing biological knowledge. These structures facilitate analysis and interpretation of complex data. We are contributing to a groundbreaking field by developing tools and methods to build, assess and investigate Knowledge Graphs and applying them to solve challenges in biology and health.

Graph Machine Learning

Developing and Applying Novel Methods on Graphs. Unleashing the power of Machine Learning on Graphs, a cutting-edge approach to extracting valuable insights from network data. We explore how this fusion of machine learning and graph theory helps to recognize patterns, generate predictions, and discovering new knowledge across a multitude of applications, including biological and medical networks.

Open Science

Data Science Democratisation. Focusing on data literacy training as a means to reduce inequality, and promoting open science by making all research, data content, and software open and accessible.

Microbial Communities

Exploring Microbial Communities and their Environments. Integrating multiple biological resources to unravel the assembly, interaction and adaptation mechanisms of microbial networks, offering insights into their functions and inpact on ecosystems, and how changes affect those communities.

Clinical Computational Omics

Providing tools for the analysis and interpretation of clinical omics data. Integration of highthroughput omics data with computational and bioinformatics approaches to advance precision medicine and disease research. These projects aim to identify biomarkers, uncover disease mechanisms, and tailor treatments based on individual molecular profiles.

https://multiomics-analytics-group.github.io/

Research

Graphs

Understanding biology on a large scale

- Fields of study that aim to **map**, **quantify**, and **understand** sets of biological molecules within an organism or system— genes, proteins, metabolites, and more
- Provide:
 - Holistic View beyond single-gene or single-protein studies, providing a comprehensive view of biological processes
 - High-Resolution Data generated with high-throughput technologies

Types of Omics

- Genomics Study of the genome, which includes all DNA within an organism
 - Sequence, structure, and function of genes
 - Key technology Next-generation sequencing (NGS)
- Transcriptomics Study of the <u>transcriptome</u>, which is the complete set of RNA transcripts
 - Gene expression and regulation
 - Key technology RNA sequencing (RNA-seq)
- Proteomics Study of the proteome, or the complete set of proteins in a cell or organism
 - Protein structure, function, interactions, and modifications
 - Key technology Mass spectrometry (MS)

- **Metabolomics** Study of the <u>metabolome</u>, which includes all small-molecule metabolites in a cell or biological system
 - Cellular processes and metabolic pathways
 - Key technology Mass spectrometry (MS)

• **Metaomics** Studies the collective genetic material, proteins, metabolites, and other molecular components from entire communities of organisms in a specific environment, without needing to isolate or culture individual species.

Types of Omics

- Sequence, structure, and function of genes
- Key technology Next-generation sequencing (NGS)
- Transcriptomics Study of the <u>transcriptome</u>, which is the complete set or RNA transcripts
 - Gene expression and regulation
 - Key technology RNA sequencing (RNA-seq)
- Proteomics Study of the proteome, or the complete set of proteins in a cell or organism
 - Protein structure, function, interactions, and modifications
 - Key technology Mass spectrometry (MS)

- Metabolomics Study of the <u>metabolome</u>, which includes all small-molecule metabolites in a cell or biological system
 - Cellular processes and metabolic pathways
 - Key technology Mass spectrometry (MS)

 Metaomics Studies the collective genetic material, proteins, metabolites, and other molecular components from entire communities of organisms in a specific environment, without needing to isolate or culture individual species.

Downstream Analysis

Downstream Omics Analysis

Downstream Proteomics Analysis

Challenges

Main goals

- Identify significant changes
- Infer biological meaning
- Integrate with other omics data

Challenges

- High dimensionality, small sample sizes
- Missing values and batch effects
- Interpretation bias in functional analysis
- Reproducibility

Proteomics Data

samples

LFQ intensities

Normalised intensities – normalisation is crucial for ensuring reliable comparison of protein levels across biological samples

Protein groups

ProteinA;ProteinB;ProteinC Peptides can match multiple proteins; protein groups handles redundancy in the matching of peptides to protein hits. **Razor protein** -> first reported protein

Proteomics Data

samples

LFQ intensities

Normalised intensities – normalisation is crucial for ensuring reliable comparison of protein levels across biological samples

samples

Spectronaut®

LFQ intensities

Normalised intensities – normalisation is crucial for ensuring reliable comparison of protein levels across biological samples

Protein groups

ProteinA;ProteinB;ProteinC Peptides can match multiple proteins; protein groups handles redundancy in the matching of peptides to protein hits. **Razor protein** -> first reported protein

Data Analysis

Data Preparation

Exploratory Analysis Filtering Normalisation Imputation

- Exploratory Analysis: understand the structure and quality of the data
- **QC/Filtering**: remove proteins and samples that do not meet quality criteria (e.g., missing too many values) Boxplots, PCA, heatmaps
- Normalisation: correct for systematic biases (e.g., sample or instrument variation) — log2, median, z-score, quantile normalisation, etc.
- Imputation: handle missing data (Missing Not at Random: below detection limit / Missing at Random: instrument errors, fragmentation efficiency, etc.) — lowintensity imputation, KNN-imputation

Data Analysis

Differential Regulation: Apply appropriate statistical tests to compare protein intensities between groups — T-test, ANOVA

Multiple test correction (e.g., Benjamini-Hochberg False Discovery Rate (FDR))

Functional Enrichment: Identify the biological functions, pathways, or processes associated with the differentially regulated proteins — Fisher exact test, Gene Set Enrichment Analysis (GSEA)

Clustering/Pattern Discovery hierarchical clustering of samples and proteins – heatmap, profile plots, correlation analysis.

Graph Analysis: Build a protein graph/network and use the structure of nodes and relationships to find relevant patterns.

Graphs

What is a Graph/Network?

• Data structures of components (nodes) connected by relationships (edges)

Social networks

Biological networks

- These structures allow:
 - Quick integration of heterogeneous data based on relationships
 - Graph theory methods can be used to analyse and interpret data, e.g., topological properties can be used to explain:
 - The possible role of specific components
 - The flow of information
 - The robustness of the system
- Visualize data

- Graph Theory: algorithms that allow you to extract relevant information from the topology of the graph.
 - Topological Features: Centrality, degree, clustering, etc.
- Graph Machine Learning:
 - Embeddings
 - Graph Neural Networks

DTU

Topological properties can help extract meaningful information and identify relevant structures within the network

Graphs in Biology

https://towardsdatascience.com/umap-for-data-integration-50b5cfa4cdcd http://snap.stanford.edu/deepnetbio-ismb/ipynb/Human+Disease+Network.html https://cytoscape.org/cytoscape-tutorials/presentations/ppi-tools1-2017-mpi.html#/ https://en.wikipedia.org/wiki/Metabolic_network https://www.scienceandfood.org/the-flavor-network/

How to Build a Network

Data sources

MINT — <u>https://mint.bio.uniroma2.it/</u>

Correlation-based networks — constructed by calculating pairwise correlations between entities based on their expression profiles across multiple conditions, time points, or samples (Weighted gene co-expression network analysis (WGCNA), co-abundance networks)

Knowledge-base approaches — also called knowledge graphs and built by integrating heterogeneous data from multiple sources —> Knowledge Graphs

How to Build a Network

Starting point

Knowledge Graphs

- A way to organise **knowledge/information** by defining associations or relationships
- These relationships facilitate integration, management and enrichment of data
- The objective when setting up a KG:

Standardisation / FAIRification Reusability

Interpretability

Automation

Representation/Visualisation

onardo Da Vinc Alice ВОВ

1990-07-04"^^xsd:da

PATHWAYS

PROTEINS

SIDE EFFECTS

https://snap.stanford.edu/graphlearning-workshop/slides/stanford_graph_learning_Biomedicine.pdf https://snap.stanford.edu/graphlearning-workshop/slides/stanford_graph_learning_Biomedicine.pdf

Knowledge Graph

Focus on data integration to represent complex biological systems and be able to reason over them

1. Define the questions you want to answer

2.Define what data can be used to answer these questions and how it is linked — Data model

3. Find where to get these data

4.Get the data, standardise it and format it

5.Generate the graph

6.Query the graph to answer the questions

Building a Knowledge Graph
Exercise

Create a data model that allows us to answer the question:

What drugs related to our disease of interest target some of the proteins identified in our experiment or relevant protein complexes and pathways?

Application

Relative intensity

Clinical Knowledge Graph – CKG

Clinical Knowledge Graph Data Model

Clinical Knowledge Graph – CKG

Pmid: 24066001

Pmid: 25423034

Liver Cancer

Alcoholic Live

Regulation of complement cascade

Alanine aminotransferse Clinical measurement variables

Diseases Primary Biliary

Pathways Regulation of Igf transport and uptake by Igfbps Vitamine A Calcium Drugs Magnesium Balsalazide

20

15

10 15

600

GPT~P24298

600

PC1 (0.06)

ALB~P02768

-CP~P00450

200

- CP~P00450

200

-SERPINA1~P01009

- ALB~P02768

400

400

Ranking of proteins

-SERPINA1~P01009

40

sity 35

LFQ

og2

Ľ.

LFQ

og2

00 III

25

20

40

35

30

25

20

0

o

Disease

Open Source Tools

Omics Data

MoNA Open Source Tools

Acore – Analytical core – workflow example

Category	Τοοι	
Statistical Analysis	<u>Perseus, limma, MSstats, AlphaStats</u>	GUI and R/Python-based options
Functional Enrichment	Enrichr	Web tool
Pathway Analysis	<u>Reactome, IPA (Qiagen)</u>	Curated databases
Network Analysis	<u>STRING, Cytoscape,</u> <u>Gephi</u>	Visual and analytical network tools
Integrated Platforms	<u>CKG, Proteome</u> <u>Discoverer, AlphaPept</u>	Combine multiple steps

Acknowledgements

Multi-omics Network Analytics Research Group

Informatics Platform

de São Paulo

The Novo Nordisk Foundation Center for Biosustainability

PIONEER CENTRE FOR ARTIFICIAL INTELLIGENCE

albsad@dtu.dk

https://github.com/Multiomics-Analytics-Group

https://multiomics-analytics-group.github.io/

