Basics of Downstream Proteomics
Analysis
14t May 2025 5:' ”;"

Alberto Santos i{:’;?*;; ); Cr b

/ Y
7 W e Found
‘ | The Novo Nordisk Foundation
5 &~

Center for Biosustainability



Multi-omics Network Analytics (MoNA)

Multimodal Data Microbial Communities

Implementing tools to process, integrate, and analyse multimodal data. Diving into
the benefits of harmonising multimodal data that converge to provide a
comprehensive view of complex biological systems. Specifically we are interested in
high-throughput multi-omics data generated using Mass spectrometry technology
(proteomics and metabolomics) and metaomics data (metagenomics and
metaproteomics).

Exploring Microbial Communities and their Environments. Integrating multiple
biological resources to unravel the assembly, interaction and adaptation
mechanisms of microbial networks, offering insights into their functions and inpact
on ecosystems, and how changes affect those communities.

Knowledge Graphs i

Building High-quality Knowledge Graphs. Using and developing Knowledge Graph

technologies and methods to structured data and to connect them to existing

biological knowledge. These structures facilitate analysis and interpretation of

complex data. We are contributing to a groundbreaking field by developing tools 7 <
and methods to build, assess and investigate Knowledge Graphs and applying them i . ;
to solve challenges in biology and health. '

o . @ i >
Graph Machine Learning :
Developing and Applying Novel Methods on Graphs. Unleashing the power of
Machine Learning on Graphs, a cutting-edge approach to extracting valuable
insights from network data. We explore how this fusion of machine learning and e
graph theory helps to recognize patterns, generate predictions, and discovering new . ®
knowledge across a multitude of applications, including biological and medical @
networks.
Open Science Clinical Computational Omics
Data Science Democratisation. Focusing on data literacy training as a means to Providing tools for the analysis and interpretation of clinical omics data. Integration of high-
reduce inequality, and promoting open science by making all research, data content, throughput omics data with computationaland bioinformatics approaches to advance precision
and software open and accessible. medicine and disease research. These projects aim to identify biomarkers, uncover disease

mechanisms, and tailor treatments based on individual molecular profiles.

https://multiomics-analytics-group.qgithub.io/
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What is Omics?

Understanding biology on a large scale

« Fields of study that aim to map, quantify, and understand sets of biological molecules within an
organism or system— genes, proteins, metabolites, and more
* Provide:

 Holistic View beyond single-gene or single-protein studies, providing a comprehensive view of
biological processes

 High-Resolution Data generated with high-throughput technologies




Types of Omics

* Genomics Study of the genome, which includes all DNA within an organism
» Sequence, structure, and function of genes The Omics-Cascade

 Key technology — Next-generation sequencing (NGS) What can happen

 Transcriptomics Study of the transcriptome, which is the complete set of
RNA transcripts

What appears to
be happening

. . I
* Gene expression and regulation 1

Transcriptome UG Co
it happen

What actually
. happens

Metabolome

» Key technology — RNA sequencing (RNA-seq)
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» Proteomics Study of the proteome, or the complete set of proteins in a cell or [
organism [
[

* Protein structure, function, interactions, and modifications [
* Key technology — Mass spectrometry (MS)

» Metabolomics Study of the metabolome, which includes all small-molecule
metabolites in a CeIVor biological system PHENOTYPE
WHY WE CARE!

* Cellular processes and metabolic pathways
» Key technology — Mass spectrometry (MS)
» Metaomics Studies the collective genetic material, proteins, metabolites, and

other molecular components from entire communities of organisms ina
specific environment, without needing to isolate or culture individual species.




Types of Omics

The Omics-Cascade
What can happen

Genome  puieiaieieieiaiieiie
What appears to
be happening

-~ - |What makes
it happen

» Proteomics Study of the proteome, or the complete set of proteins in a cell or
organism

Proteome
* Protein structure, function, interactions, and modifications

* Key technology — Mass spectrometry (MS)

» Metabolomics Study of the metabolome, which includes all small-molecule TY
metabolites in a CeI?/or biological system PHENO PE
WHY WE CARE!

* Cellular processes and metabolic pathways

» Key technology — Mass spectrometry (MS)




Downstream Analysis

genes

ees

The Omics-Cascade
What can happen

transcripts I

What appears to
be happening

proteins

metabolites

Transcriptome (Vi e

\ it happen

samples

=176](=10)081=1| What actually
happens

Systems Biology - Metabolome

PHENOTYPE
WHY WE CARE! <J

species




Downstream Omics Analysis
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Downstream Proteomics Analysis



Challenges

Main goals Challenges
* |dentify significant changes * High dimensionality, small sample
* Infer biological meaning sizes
* Integrate with other omics data * Missingvalues and batch effects
* Interpretation bias in functional
analysis

* Reproducibility

[ Missing Values ] [ High-dimensionality ] [ Missing Values ]
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Proteomics Data

SDRF file - samples

Stardised Experimental
Metatada

core Ix

quantms: Introduction

Quantitative mass spectrometry workflow.

\4

proteins

Protein groups

LFQ intensities

Normalised intensities —
normalisation is crucial for
ensuring reliable comparison of
protein levels across biological
samples

ProteinA;ProteinB;ProteinC

Peptides can match multiple proteins;
protein groups handles redundancy in the
matching of peptides to protein hits.
Razor protein -> first reported protein



Proteomics Data

SDREF file -

Stardised Experimental
Metatada

core Ix

quantms: Introduction

Quantitative mass spectrometry workflow.

Pipeline

v

peptides

samples

LFQ intensities

Normalised intensities -
normalisation is crucial for
ensuring reliable comparison of
protein levels across biological
samples



Proteomics Data

=FER ~GPEPE

ﬂv

=,

\/
Ve

Spectronaut®

vI=I

proteins

samples

Protein groups

LFQ intensities

Normalised intensities —
normalisation is crucial for
ensuring reliable comparison of
protein levels across biological
samples

ProteinA;ProteinB;ProteinC

Peptides can match multiple proteins;
protein groups handles redundancy inthe
matching of peptides to protein hits.
Razor protein -> first reported protein



Analytical Workflow

Data Analysis

Data Preparation
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Data Preparation

Exploratory
Analysis
Filtering

 Exploratory Analysis: understand the structure and quality of the data

 QC/Filtering: remove proteins and samples that do not meet quality criteria (e.g.,
missing too many values) — Boxplots, PCA, heatmaps

« Normalisation: correct for systematic biases (e.g., sample or instrument variation)
— log2, median, z-score, quantile normalisation, etc.

Normalisation

moutai Missing at Random: instrument errors, fragmentation efficiency, etc.) — low-
mputaton intensity imputation, KNN-imputation

 Imputation: handle missing data (Missing Not at Random: below detection limit /

PCA plot groups
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Data Analysis

Differential Regulation: Apply appropriate statistical tests
iy to compare protein intensities between groups — T-test,
( ANOVA

Multiple test correction (e.g., Benjamini-Hochberg False
Discovery Rate (FDR))

" I - Functional Enrichment: Identify the biological functions,
pathways, or processes associated with the differentially
I c. regulated proteins — Fisher exact test, Gene Set Enrichment
Analysis (GSEA)

PIGR~B01833

-log10(pvalue)
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What is a Graph/Network?

« Data structures of components (hodes) connected by relationships (edges)

Social networks

Biological
networks




weighted nodes (size)

O
O

Node

weighted edges (thickness)

Edge undirected edge

»  directed edge
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Why Graphs?

* These structures allow:
* Quick integration of heterogeneous data based on relationships

 Graph theory methods can be used to analyse and interpret data, e.g., topological properties
can be used to explain:

* The possible role of specific components
» The flow of information i o
« The robustness of the system ~. A

* Visualize data




How to Analyse Graph Structures

« Graph Theory: algorithms that allow you to extract relevant information from the
topology of the graph.
 Topological Features: Centrality, degree, clustering, etc.

« Graph Machine Learning:
« Embeddings
» Graph Neural Networks

https://huggingface.co/blog/intro-graphml



Some Topological Features

Topological properties can help extract meaningful information and identify
relevant structures within the network

Shortest Centralit
path y

a Node c Degreecentrality d Betweenness centrality e Closeness centrality
\
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Graph Theory Measures and Their Application to Neurosurgical Eloquence. Cancers 2023



https://towardsdatascience.com/umap-for-data-integration-50b5cfadcdcd

n n http://snap.stanford.edu/deepnetbio-ismb/ipynb/Human-+Diseaset+Network.html
G ra h S I n B I O I O https://cytoscape.org/cytoscape-tutorials/presentations/ppi-tools1-2017-mpi.html#/
https://en.wikipedia.org/wiki/Metabolic network

https://www.s cienceandfood.org/the-flavor-network/

Protein-protein Interaction Networks Single cell Networks Disease Networks

Metabolic Networks
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How to Build a Network

Data to Graph

Data sources

* STRING — https://string-db.org/
BioGRID — https://thebiogrid.org/
IntAct — https://www.ebi.ac.uk/intact
REACTOME — https://reactome.org/
KEGG — https://www.genome.|p/kegg/
 MINT — https://mint.bio.uniromaZ.it/

Correlation-based networks — constructed by calculating pairwise correlations between entities
based on their expression profiles across multiple conditions, time points, or samples
(Weighted gene co-expression network analysis (WGCNA), co-abundance networks)

Knowledge-base approaches — also called knowledge graphs and built by integrating
heterogeneous data from multiple sources —> Knowledge Graphs

Height
090 094 098

SSSSSSS
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How to Build a Network
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Knowledge Graphs



Knowledge Graphs

« A way to organise knowledge/information by defining associations or relationships
 These relationships facilitate integration, management and enrichment of data

» The objective when setting up a KG:
Standardisation / FAIRIfication

Reusabillity
Interpretability
Automation

Representation/Visualisation

City

The Knowledge Graph Cookbook. Andreas Blumauer and Helmut Nagy. 2020



Knowledge Graphs

How Does It Work?
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How Does It Work?
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Knowledge Graph

Focus on data integration to represent complex biological systems and
be able to reason over them
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Building a Knowledge Graph

1.Define the questions you want to answer

2.Define what data can be used to answer these questions and how it is linked —
Data model

3.Find where to get these data

4.Get the data, standardise it and format it
5.Generate the graph

6.Query the graph to answer the questions



Building a Knowledge Graph



Building a Knowledge Graph

Exercise

Create a data model that allows us to answer the question:
What drugs related to our disease of interest target some of the proteins identified in our
experiment or relevant protein complexes and pathways?



Application



Clinical Knowledge Graph

samples

proteins

Relative intensity

https://www.nature.com/articles/s41587-021-01145-6



Clinical Knowledge Graph — CKG
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Clinical Knowledge Graph Data Model
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proteins

Clinical Knowledge Graph — CKG
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Open Source Tools
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MoNA Open Source Tools
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Acore — Analytical core — workflow example
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Other Tools for Downstream Proteomics Analysis

Category  [eTe]

Perseus, limma, MSstats, GUIl and R/Python-based

Statistical Analysis

AlphaStats options
Functional Enrichment Enrichr Web tool
Pathway Analysis Reactome, IPA (Qiagen) Curated databases
Network Analysis STRINQ, Cytoscape, Visual and analytical
Gephi network tools

CKG, Proteome

e AUl e Combine multiple steps

Integrated Platforms



https://maxquant.net/perseus/
https://www.bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/mStats/index.html
https://pypi.org/project/alphastats/
https://maayanlab.cloud/Enrichr/
https://reactome.org/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://string-db.org/
https://cytoscape.org/
https://gephi.org/
https://www.nature.com/articles/s41587-021-01145-6
https://www.thermofisher.com/dk/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software.html?cid=E.25CMD.CD103.25419.01&ce=E.25CMD.CD103.25419.01&https%3A%2F%2Fwww.thermofisher.com%2Fus%2Fen%2Fhome%2Findustrial%2Fchromatography%2Fchromatography-data-systems-cds%2Fcds-software-built-mass-spectrometry.html%3Fcid=E.22CMD.DL102.05715.01&ef_id=CjwKCAjw24vBBhABEiwANFG7y_4QYihyYUbWSVEFawHxhkBy9Ykof5PXtNZoNOjJX3XGWRBa6mnfPxoCmUsQAvD_BwE%3AG%3As&s_kwcid=AL%213652%213%21725351054093%21p%21%21g%21%21proteome+discoverer&gad_source=1&gad_campaignid=21804161013&gbraid=0AAAAADxi_GTxipCJoPaUPLgh6_2nAb44N&gclid=CjwKCAjw24vBBhABEiwANFG7y_4QYihyYUbWSVEFawHxhkBy9Ykof5PXtNZoNOjJX3XGWRBa6mnfPxoCmUsQAvD_BwE&erpType=Global_E1
https://www.thermofisher.com/dk/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software.html?cid=E.25CMD.CD103.25419.01&ce=E.25CMD.CD103.25419.01&https%3A%2F%2Fwww.thermofisher.com%2Fus%2Fen%2Fhome%2Findustrial%2Fchromatography%2Fchromatography-data-systems-cds%2Fcds-software-built-mass-spectrometry.html%3Fcid=E.22CMD.DL102.05715.01&ef_id=CjwKCAjw24vBBhABEiwANFG7y_4QYihyYUbWSVEFawHxhkBy9Ykof5PXtNZoNOjJX3XGWRBa6mnfPxoCmUsQAvD_BwE%3AG%3As&s_kwcid=AL%213652%213%21725351054093%21p%21%21g%21%21proteome+discoverer&gad_source=1&gad_campaignid=21804161013&gbraid=0AAAAADxi_GTxipCJoPaUPLgh6_2nAb44N&gclid=CjwKCAjw24vBBhABEiwANFG7y_4QYihyYUbWSVEFawHxhkBy9Ykof5PXtNZoNOjJX3XGWRBa6mnfPxoCmUsQAvD_BwE&erpType=Global_E1
https://www.nature.com/articles/s41467-024-46485-4
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