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Time Topic Lecturer
Proteomics
8.30 - 10.00 - Peptide and protein identification Marco Reverenna
OV T - Protein quantification
10.00-10.30 Little break
Steps in data processing (using QuantMS)
- Sample Data Relationship Format (SDRF)
10.30 - 12.00 - FASTA file to define search space Henry Emanuel Webel
oM e - Spectrum files from Mass-spectrometer
- Running QuantMS to process spectra to identified and quantified peptide sequences
12.00 -13.00 Lunch (sandwiches are provided)
Steps in statistical analysis
13.00 - 14.30 - Brief reference to output formats overview, but focus on using QuantMS Alberto Santos
Basic statistical analysis of a two-group experiment with one timepoint (option1) or four timepoints (option?2)
- Peptide to protein (group) aggregation
15.00 - 16.30 - Downstream data analysis of proteins (using analytical core library developed at DTU Biosustain and Henry Emanuel Webel

other Python libraries)
- Building a report with vuegen reports (developed at DTU Biosustain)



https://docs.quantms.org/en/latest/
https://analytics-core.readthedocs.io/latest/
https://vuegen.readthedocs.io/en/latest/

Our trip into the proteomics world!
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Proteomics



Proteins as the new frontier: health, innovation and investments

FOI-b es Proteomics is like a superpower. It lets doctors peek inside your body
to see what’s happening in real time. Proteins signal when something

is wrong inside your body. They can confirm when an illness is
Jun 23, 2021, 04:38pm EDT 8,993 views & y y Y
underway, long before we even feel sick.

PrOteomiC S : The NeXt Tru1y As Joshua LaBaer, founder of Harvard’s Proteomics Institute,
° ° said: “It’s the proteins we can measure before anything
Massive Investing

else.” Illnesses like the flu, COVID, and HIV are already diagnosed

L ]
Oppo rtunlty through protein tests.
Stephen McBride Former Contributor ®
ollow
Markets

The editor of RiskHedge Report

DESEASE DETECTION

Jan van Oostrum from Novartis reported that the company’s proteomics program has b

already resulted in two new drug candidates in clinical development. Additionally seven DI SC Ov ERY O FNEWD RU G S

drug candidates are in the pipeline in preclinical development. Van Oostrum also revealed

that in addition to the drug candidates, two biomarkers are now being evaluated in clinical
studies.

https://www.forbes.com/sites/stephenmcbride1/2021/06/23/proteomics-the-next-truly-massive-investing-opportunity/?sh=562df1c23f4b



The business of proteomics: from lab to market

Future Market Insights

Global Proteomics Market Poised for Significant Growth, g‘;fggg}”&mgm ]
Projected to Reach USD 134.82 Billion by 2035 | Future 1
Market Insights, Inc.

The USA's proteomics market grows steadily, driven by NIH funding in
personalized medicine, while Canada is expected to grow at a 12.1% CAGR during
the forecast period. Increasing adoption of precision medicine and sophisticated
diagnostics in specific target disease treatment, as well as the increased
concentration of target diseases, are significant drivers of growth prospects.

January 09, 2025 10:30 ET | Source: Future Market Insights Global and Consulting Pvt. Ltd. m

https://www.globenewswire.com/news-release/2025/01/09/3007168/0/en/Global-Proteomics-Market-Poised-for-Significant-
Growth-Projected-to-Reach-USD-134-82-Billion-by-2035-Future-Market-Insights-Inc.html



Introducing proteomics

"Proteomics is the study of interactions,
function, composition, and structure of
proteins and their cellular activities.”

Metabolomics

AL-AMRANI, Safa, et al. Proteomics: Concepts and applications in human medicine. World Journal of Biological Chemistry, 2021, 12.5: 57. 7



Proteins drive function and phenotype

Protein-protein
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Proteomic and interactomic insights into the molecular basis of cell functional diversity



A single protein, many proteoforms

200000000000000000000 Base sequence

Proteins exist in many modified forms, called

proteoforms. These result from combinations of post-

. . . Singly. phpsphorylated
translational modifications (PTMs). °°mb'"at'°"sc(4 o
C n!
Protein kinase A has 45 potential phosphorylation sites . = ri(n —r)!

- With just 5 events: 1.2 million proteoforms (C(45, 5))
- With 9 events: 890 million proteoforms (C(45,9))

n = number of potential action sites (S/T/Y)
r = number of observed events

Doubly phosphorylated
combinations

C(4,2)=6

Even small system get complex fast > 11 sites + 5

events = 462 potential proteoforms

J.Proteome Res. 2023, 22, 12, 3663-3675



Different post translational modifications

Reversible

Ribosylation

Citrullination

Ubiquitination

Deamidation

Disulphide
bonds

Proteolytic
Cleavage

Structural
changes

Protein
splicing

Acetylation Methylation
4 Phosphorylation

Reversible
Shal chemical g\'Ou\?‘)

Olzscha, H. Biological Chemistry, vol. 400, no. 7, 2019, pp. 895-915 (https:/doi.org/10.1515/hsz-2018-0458)

2 most common PTMs

o Phosphorylation: Addition of a phosphate
group to proteins, often regulating cell
signalling and protein function.

o Acetylation: Attachment of an acetyl group,
commonly influencing gene expression and

protein stability.

Shahin Ramazi, Javad Zahiri, Post-translational modifications in proteins: resources, tools and prediction methods, Database, Volume 2021, 2021,

baab012, https://doi.org/10.1093/database/baab012
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Proteomics in action!

blomarker discovery single-cell proteomics
medical microbiology Cancer proteomics

archaeology ~ microbiome studies ~ €volution

crop development  protein identification
host parasite interactions Immunoproteomics

cell signalling funchonalamqtgtons |
drug design  clinical proteomics
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Decoding peptides with tandem mass spectrometry

Collision

[/ lon source U | Mass analyser 1 | enction cel Mass analyser 2 | ( Detector

I Sequence information l

(order of amino acids in the peptide)

Introduction Composition information Processing

system (which peptide masses are there) system
I MS2 peptide 1 1 /

Trypsin MS2 peptide 2 |
g - |‘ Peptide mass spectrum
pferg‘a);tion MS2 peptide 3 MS1
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From proteins to peptides: the role of proteases

Proteases are enzymes that cleave proteins into smaller peptides by cutting specific
peptide bonds. Each protease has its own cleavage specificity, depending on the
amino acid sequence. Trypsin is the most used protease in proteomics.

* |t cleaves after lysine (K) and arginine (R)
« (Generates mostly small (0.5-3kDa) di-charged peptides (N-term and R/K)
« Can't get 100% of coverage by using only trypsin

NRRPCHSHTKECESAWKNRPCHSHTKKPCHSHTKKNRKVWKIPPFFW

l Enzymatic digestion

KVWK r&w
63 CCESAWK KPCHSHTK

RPCHSHTK NRPCHSHTK 98 KVWK

Tryptic peptides

13



Bottom-up proteomics:

digest first, identify later

™
r- Bottom-up proteomics } “\
C_ . Peptide
_ . = . Peptide selected Peptide
Digestion I C ) separation analyms
O < -
v 2 | |
Small peptides :
k (8>aa>30) LC-MS
,-[ Middle-down proteomics }
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% Digestion . %,-?- e% separation . analysis
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,-[ Top-down proteomics }
%% p Proteoform b "
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|
Intact MS1
proteins 15

Most of the experiment are done by

following the bottom-up approach

This method involves the
fragmentation of proteins into
smaller peptides, followed by the
reconstruction of the protein

sequences.
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Protein identification



What does a MS1 spectrum tell us?

Y axis

How abundant that
specific ion was in the
sample at the time of
detection; higher peak
indicate ions that are
more abundant and
lower peaks indicate
ions that are less

abundant
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X axis

Mass-to-charge ratio is
calculated by dividing
the ion’'s mass by its
charge. Each peak
position along the axis
tells you the size of the

detected ion
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MS1 spectra provide only composition information!

NH2 ° ° Q G Q COOH 842 Da
NH2 a ° Q G ° COOH 842 Da
NH2 0 Q Q ° Q COOH 842 Da

NH2 ° Q G ° @ COOH 842 Da

Precursor masses provide the overall mass of the peptide, but not the sequence!
The sequence define which peptide it is, and so which protein belong to, that 's why it is so import to know!

In MS/MS, this precursor is isolated and broken into fragment ions for identification

17



Residue masses: the basis for peptide sequencing

Carboxylic group (COOH)

Ho | | HoH

CH HC
° 1—H20 \CHs
Alanine Va“ne
ik
|
H,N—C —C—N —C—COOH
Ll @i
CH,l0 HC
CH,
Alanylvaline

Residue mass = Amino acid mass — H20

amino group (NH2)

|
H,N—C —CO@N —C—COOH
| L_CH,

Peptide bond

Amino Acid
Glycine
Alanine
Serine

Valine
Leucine
Isoleucine
Threonine
Cysteine
Proline
Phenylalanine
Tyrosine
Tryptophan
Aspartic Acid
Glutamic Acid
Asparagine
Glutamine
Lysine
Arginine
Histidine
Methionine

Abbreviation

T I X XQOzZzmMmoOos=s=<"TT7TOA -0 < n0>»o

Isomers

Residue Mass (Da)

57.05

71.08

87.08

99.13

113.16
113.16
101.11
103.15
97.12

147.18
163.18
186.21
115.09
129.12
114.10
128.13
128.17
156.19
137.14
131.19

18



Fragmentation patterns define the spectrum

Only fragments that carrya =~
charge can be revealed by
the detector!

|

|

|

' Ra CTerminus: '

| -Terminus: X, v, z series
|

|

|

H,N

N OH

N-Terminus: a, b, c series

R 0 Rs

— — —_— -l — —_— —_— -l —

a, b, Cq as b Co s by Cy

Break point around the peptide bond depends on the fragmentation method

Peptide fragmentation can be controlled by instrument parameters (pressure, collision energy ...)
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How fragment ions reveal the peptide sequence

Fragmentation site

b1
C _>%N_G +

I y2
" @000 —* 00 + OO

B b3 y
i Q- — 000 + G-

Relative intensity Relative intensity

Bear in mind

1.

gk~ w b

Practical to start with y1: Lysine (147) or
Arginine (175)

y1 may not be observed

b1 almost never observed

Leu/lle are isobaric

Read the sequence from the end

A A 57
y2 y2
b2 b2 113
y3 147 y3
b1 A b1 y
. F . L G b3 K '{‘G ) b3
> m/z > m/z
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Massive amount of mass spectra data

a P g2 1

1h LC-MS/MS produces 5000 MS1 spectra, the equivalent of 100000 MS2 spectra

21



Protein database can help to identify our peptides!

Peptides MS/MS spectra
Protein (protease fragments) of peptides
R T
R > = | —
X NG || l ‘I.I '
L 4 ~—
Protein X 'S m/z
: _ |dentified
[ trypsin = Matching peptide!
XXXXXKAPND FNLKX(XOXOXXX Vad
Protein Peptides predicted in silico MS/MS pattern ~~
database from proteolysis from theoretical peptides
e
=
et} = — E= — ||l o -
e
Proteomics is feasible for APNDFNLK iz

sequenced genomes
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Peptide spectra matching (PSM) can be still wrong

Pros

- Easily automated for high throughput applications (millions of spectra)
- | - Can get matches from spectra that are difficult to interpret
Cons

mz - Can produce matches from marginal data
- Itis slow if no enzyme specificity is used
- Can be slow if many variable modifications are allowed
” II ‘ ‘ I || - Can be slow if large data sets are searched
2 - You can detect only peptides which are in the peptide/protein database

In large scale analysis we will always produce matches, even if they might be wrong.
To identify proteins, we need high quality PSMs obtained by mass spectrometry instruments with high accuracy

We need to create a scoring metric to find out which of the matches are plausible

23



Scoring peptides help to select the best candidates

The match between the spectrum and PEP2 is less PER PEP2
T 13 T 13

Intensity , . likely to be random than the match with PEP1
| A 12 1461.8] | A 12 1461.8]
! | | | | D 11 1390.8] | D 11 1390.8]
! | | . | ! | K 10 12757 | K 10  1275.7/
| | } | | | | N 9 11476/ | N 9  1147.6|
! | i Q 8 10336 [Q 8  1033.6]
‘ ‘ | | K 7 905.5 | K 7 905.5 |
200 400 600 800 1000 1200 1400 miz LF__6 77746] [(F 6 77746
(L 5 63039 | L 5  630.39
| Q 4 5173 | Q 4  517.3]
[T 3 389.3| | T 3 389.3 |
1 TADKLQEFLQTLR 225 S -
PSM with highest score is m > o2882] [L 2 2882
2 TADKNQKFLQTLR 152 chosen and used for
L . | R 1 1751 [ R 1 175.1 |
3 TANELQEFLQTLR 89 protein identifications
4 score: 152 score: 225

Mascot lon Score
24



Peptides filtering through False Discovery Rate

Usually, we deal with more than 100’000 PSMs, not all of them are good quality, resulting in a distribution of high
and low scoring PSMs. How do we decide which peptides is wrong or right?

FDR permits to control the number of incorrect matches and so minimise mistakes!

Protein database

[ oo FP
>
target FDR = FDR =
I MANCTVRAPNDFNLK 98sesesese FPLTP
= | WTGCARPHNMEQST $3ggssssss
00006
e 00000 00000 "
— . False positive
search engine| —> 00666 66666 P FDR 1%

e 00000 00000 ,

— ..y....\ FDR 50%
decoy B —— # false target hits ~ # decoy hits : E

e >decoy (reverse) ! | True positive

— TSQEMNHPRACGTW ! :

KLNFDNPARVTVNAM
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Protein inference: what we know (and do not know)

Bottom-up proteomics identifies peptides not proteins!

Many proteins share identical sequence parts, so proteins can only be identified if a unique peptide is present

Protein 1 ‘ Protein 2 Protein 1 ‘ Protein 2

Protein 3 Protein 3

No info about presence or absence of protein 3

Nesvizhskii, A. I., & Aebersold, R. (2005). Interpretation of shotgun proteomic data. Molecular & cellular proteomics, 4(10), 1419-1440. 26



What comes next?

Sequence tag searching

De novo sequencing
Peptide mass fingerprint ﬁ A k 5

I\/Ianual spectrum mterpretatlon

[ Spectrum matching ]
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Protein quantification



The role of quantification in proteomics

Protein quantification refers to measuring the relative or absolute abundance of peptides or proteins in a biological

sample.

- Enables comparison between different conditions (e.g. treated vs control)
- Critical for understanding cellular changes, disease states or drug response
- Can be performed label-free or with stable isotopic labelling

- Used in biomarker discovery, systems biology and clinical proteomics

Without quantification, proteomics would be blind to biological differences

29



Relative and absolute quantification

Protein quantification can be performed either relatively, comparing expression between conditions, or absolutely,

determining exact molecule counts using internal standards.

Relative quantification Absolute quantification

Compares same protein across conditions Determines number of molecules

Reports fold changes Reports molecular counts

No info on absolute amount Requires internal standards

Good for global, untargeted profiling |deal for targeted, hypothesis-driven analysis
Used in discovery studies Enables stoichiometry comparisons

Hypothesis generating Hypothesis testing

30



Data acquisition strategies in proteomics: DDA and DIA

There are two main acquisition methods are used in proteomics:

1) Data Dependent Acquisition (DDA) selects ions based on intensity

2) Data Independent Acquisition (DIA) fragments all ions in a defined m/z window.

Fragmentation trigger
Selection
|dentification
Quantification

Use case

Drawback

-

DDA (Data Dependent)

Most intense precursor ions
Stochastic (intensity-based)

MS2 spectra matched to libraries
Label-free or labeled (TMT, SILAC...)
Discovery workflows

Missing values

DIA (Data Independent)

All precursors in predefined windows
Systematic and unbiased

Requires deconvolution and libraries
Label-free or plexDIA

Large-scale, high reproducibility

Complex data analysis

31



Retention time: the key to comparing samples

In label-free quantification, peptide intensity is measured across multiple runs.

Matching ions by both m/z and retention time ensures accurate quantification.

LC-MS experiment 1 LC-MS experiment 2
z

2 g e
1) m/z - identifies peptides 5 iiad
2) Intensity = reflects amount of peptide e
3) Retention time - increase match reliability

%

4) XIC = tack specific ions across runs T

XIC Extracted ion chromatogram

N\
/

[ \«
-

XIC Extracted ion chromatogram

Intensity
Intensit

32



Label-free quantification (LFQ)

In label-free quantification (LFQ), protein amounts are inferred by comparing ion intensities across multiple LC-

MS runs and no labelling is needed.

Each sample is analysed separately by LC-MS.

Peak intensities of same ions are compared

|dentification is typically done via MS2

No isotope labelling is involved

Pros: cost-effective, simple workflow, no chemical labelling

steps.

Cons: run-to-run variability, missing values, requires

normalization.

Sample 1 Sample 2

Digest ﬂ
5 )
Aq"ﬁ \A
ﬂ LC-MS/MS ﬂ
MSs1 _I__LJ_ MS1 J._L_L

Ms2 | P mMs2 | —L

¢ v
X g
7|
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Comparing labeling strategies

SILAC & SILAM (in vivo)

iTRAQ & TMT (in vitro)

Labelling method

|sotopic amino acids fed to cells

Chemical tagging with isobaric labels

When labeled

During protein synthesis (in cell culture)

After protein digestion

Samples processed

Separately, then mixed before MS

Pooled and analyzed together

MS comparison

Mass shift seen in MS1

Reporter ions detected in MS2 or MS3

Multiplexing Usually 2-3 samples Up to 16-35 samples (TMTpro)

Pros High precision, direct incorporation High throughput, compatible with any
sample

Cons Limited to cultured cells Ratio compression (fixed with SPS-

MS3)

34



Absolute quantification with iBAQ

IBAQ (Intensity Based Absolute Quantification) is a method used to estimate absolute protein abundance from
mass spectrometry data.

IBAQ= Total intensity of all detected peptides/ Number of theoretically observable peptides
It accounts for protein length and tryptic behaviour, making protein intensities comparable across the

proteome.

Why use it?

1. Allows comparison between proteins, not just across samples
2. Compatible with DDA and DIA workflows

3. With spike-in standards, gives absolute protein copy numbers

35



QuantMS to analyse our data

nature methods
nf-core/ ©

Explore content ~  About the journal ~  Publish withus quantms

nature > nature methods > brief communications > article TMT LFQ DIA'LFQ

Brief Communication | Open access | Published: 04 July 2024

quantms: a cloud-based pipeline for quantitative l@ @ @ @ @ @

proteomics enables the reanalysis of public proteomics

data Peptide Protein Identification
MS-GF+, SAGE, Comet DIA-NN
Chengxin Dai, Julianus Pfeuffer, Hong Wang, Ping Zheng, Lukas Kall, Timo Sachsenberg, Vadim Percolator, MS2Rescore, ConsesusID
Demichev, Mingze Bai, Oliver Kohlbacher & Yasset Perez-Riverol & | I I |
Nature Methods 21, 1603-1607 (2024) | Cite this article Protein Quantification
1k Accesses | 17 Citations | 22 Altmetric | Metrics IsobaricAnalyzer proteomicsLFQ DIANN

. inference,mbr,quantification
Proteininference

Abstract
The volume of public proteomics data is rapidly increasing, causing a computational @
challenge for large-scale reanalysis. Here, we introduce quantms (https://quant,ms.org/), an

N . . . Annotation
open-source cloud-based pipeline for massively parallel proteomics data analysis. We used
quantms to reanalyze 83 public ProteomeXchange datasets, comprising 29,354 instrument X 7
files from 13,132 human samples, to quantify 16,599 proteins based on 1.03 million unique Reports
peptides. quantms is based on standard file formats improving the reproducibility, Multiac

submission and dissemination of the data to ProteomeXchange.
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L et’'s have a break!
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