import arviz as az
import numpy as np # numpy is for numerical programming
import xarray as xr # xarray is for manipulating n dimensional tables; arviz uses it a lot!
= az.load_arviz_data("radon")
idata idata
-
<xarray.Dataset> Size: 4MB Dimensions: (chain: 4, draw: 500, g_coef: 2, County: 85) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * g_coef (g_coef) <U9 72B 'intercept' 'slope' * County (County) <U17 6kB 'AITKIN' 'ANOKA' ... 'WRIGHT' 'YELLOW MEDICINE' Data variables: g (chain, draw, g_coef) float64 32kB ... za_county (chain, draw, County) float64 1MB ... b (chain, draw) float64 16kB ... sigma_a (chain, draw) float64 16kB ... a (chain, draw, County) float64 1MB ... a_county (chain, draw, County) float64 1MB ... sigma (chain, draw) float64 16kB ... Attributes: created_at: 2020-07-24T18:15:12.191355 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2 sampling_time: 18.096983432769775 tuning_steps: 1000
-
<xarray.Dataset> Size: 15MB Dimensions: (chain: 4, draw: 500, obs_id: 919) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 7 ... 912 913 914 915 916 917 918 Data variables: y (chain, draw, obs_id) float64 15MB ... Attributes: created_at: 2020-07-24T18:15:12.449843 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
-
<xarray.Dataset> Size: 15MB Dimensions: (chain: 4, draw: 500, obs_id: 919) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 7 ... 912 913 914 915 916 917 918 Data variables: y (chain, draw, obs_id) float64 15MB ... Attributes: created_at: 2020-07-24T18:15:12.448264 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
-
<xarray.Dataset> Size: 150kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 494 495 496 497 498 499 Data variables: step_size_bar (chain, draw) float64 16kB ... diverging (chain, draw) bool 2kB ... energy (chain, draw) float64 16kB ... tree_size (chain, draw) float64 16kB ... mean_tree_accept (chain, draw) float64 16kB ... step_size (chain, draw) float64 16kB ... depth (chain, draw) int64 16kB ... energy_error (chain, draw) float64 16kB ... lp (chain, draw) float64 16kB ... max_energy_error (chain, draw) float64 16kB ... Attributes: created_at: 2020-07-24T18:15:12.197697 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2 sampling_time: 18.096983432769775 tuning_steps: 1000
-
<xarray.Dataset> Size: 1MB Dimensions: (chain: 1, draw: 500, County: 85, g_coef: 2) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 494 495 496 497 498 499 * County (County) <U17 6kB 'AITKIN' 'ANOKA' ... 'YELLOW MEDICINE' * g_coef (g_coef) <U9 72B 'intercept' 'slope' Data variables: a_county (chain, draw, County) float64 340kB ... sigma_log__ (chain, draw) float64 4kB ... sigma_a (chain, draw) float64 4kB ... a (chain, draw, County) float64 340kB ... b (chain, draw) float64 4kB ... za_county (chain, draw, County) float64 340kB ... sigma (chain, draw) float64 4kB ... g (chain, draw, g_coef) float64 8kB ... sigma_a_log__ (chain, draw) float64 4kB ... Attributes: created_at: 2020-07-24T18:15:12.454586 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
-
<xarray.Dataset> Size: 4MB Dimensions: (chain: 1, draw: 500, obs_id: 919) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 7 ... 912 913 914 915 916 917 918 Data variables: y (chain, draw, obs_id) float64 4MB ... Attributes: created_at: 2020-07-24T18:15:12.457652 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
-
<xarray.Dataset> Size: 15kB Dimensions: (obs_id: 919) Coordinates: * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 7 ... 912 913 914 915 916 917 918 Data variables: y (obs_id) float64 7kB ... Attributes: created_at: 2020-07-24T18:15:12.458415 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
-
<xarray.Dataset> Size: 21kB Dimensions: (obs_id: 919, County: 85) Coordinates: * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 ... 912 913 914 915 916 917 918 * County (County) <U17 6kB 'AITKIN' 'ANOKA' ... 'YELLOW MEDICINE' Data variables: floor_idx (obs_id) int32 4kB ... county_idx (obs_id) int32 4kB ... uranium (County) float64 680B ... Attributes: created_at: 2020-07-24T18:15:12.459832 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2