VueCore#
implements at the moment not too many figures
will be used to define plotting functions for certain analysis types in our core analysis library
at the moment only support the plotly backend
import pathlib
import pandas as pd
from vuecore.plots.basic.histogram import create_histogram_plot
Proteomics data example#
dir_data = pathlib.Path("data")
df = (
pd.read_csv(dir_data / "proteins" / "proteins.csv", index_col=0)
.rename_axis("Protein_ID", axis=1)
.stack()
.reset_index(name="Intensity")
)
df
Reference | Protein_ID | Intensity | |
---|---|---|---|
0 | DMSO_rep1 | A5A613 | 27.180209 |
1 | DMSO_rep1 | P00350 | 28.151576 |
2 | DMSO_rep1 | P00363 | 30.247131 |
3 | DMSO_rep1 | P00370 | 27.459171 |
4 | DMSO_rep1 | P00393 | 26.823758 |
... | ... | ... | ... |
15084 | Suf_rep4 | Q47710 | 27.071346 |
15085 | Suf_rep4 | Q57261 | 26.643479 |
15086 | Suf_rep4 | Q59385 | 27.847610 |
15087 | Suf_rep4 | Q7DFV3 | 27.605449 |
15088 | Suf_rep4 | Q93K97 | 26.177716 |
15089 rows × 3 columns
# to be continued
# Generate the advanced histogram plot
fig = create_histogram_plot(
data=df,
x="Intensity",
color="Reference",
barmode="overlay",
histnorm="probability density",
title="Protein intensities by sample",
subtitle="Histogram with probability density normalized",
labels={"Intensity": "Protein Intensity", "Reference": "Sample"},
hover_data=["Protein_ID"],
opacity=0.75,
)
fig
For now vuecore is built on top of ploltly:
type(fig)
plotly.graph_objs._figure.Figure